Radixin Is a Constituent of Stereocilia in Hair Cells

Total Page:16

File Type:pdf, Size:1020Kb

Radixin Is a Constituent of Stereocilia in Hair Cells Radixin is a constituent of stereocilia in hair cells F. Pataky, R. Pironkova, and A. J. Hudspeth* Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021 Contributed by A. J. Hudspeth, December 26, 2003 Proteins of the ezrin-radixin-moesin family are ubiquitous constit- present study whether hair cells express an ERM protein that uents of the submembrane cortex, especially in epithelial cells. occurs in hair bundles. Earlier biochemical results suggested that a protein of this family occurs in the hair bundle, the cluster of actin-filled stereocilia that Materials and Methods serves as the mechanoreceptive organelle of each hair cell in the Production of Antisera. For the production of antisera, we selected inner ear. We prepared antipeptide antisera directed against portions of chicken ezrin and radixin corresponding to regions in chicken radixin and ezrin and demonstrated their specificity and the human proteins that had previously proven useful in eliciting absence of crossreactivity. When used in immunocytochemical specific immune responses (9). Antisera 1041 and 1029 were studies of isolated hair cells, anti-radixin produced an intense band raised against two distinct portions of chicken radixin (GenBank of labeling at the bases of hair bundles from the chicken, frog, accession no. CAB59977), NH2-478-VIPPTENEHDEHDENN- mouse, and zebrafish. Electron microscopic immunocytochemistry COOH and NH2-400-KAALAKQAADQMKN-COOH, respec- disclosed that radixin labeling commenced in the stereociliary tively. These sequences are specific for radixin, with little taper, peaked in the lower stereociliary shaft, and declined pro- homology to avian ezrin or to the moesins of other species. gressively toward the hair bundle’s top. Labeling with anti-ezrin Antiserum 1028 was raised against a peptide from chicken ezrin produced no signal in hair bundles. Radixin is thus a prominent (GenBank accession no. BAA75497) NH2-476-IYEPVNYH- constituent of stereocilia, where it may participate in anchoring the VHDNLHDEGSEY-COOH, with minimal homology to avian ‘‘pointed’’ ends of actin filaments to the membrane. radixin or to moesins. The synthesis of each peptide, conjugation to keyhole limpet hemocyanin by an amino-terminal cysteine he hair bundle is the mechanoreceptive organelle essential residue, purification, and serum production in rabbits were Tfor the senses of hearing and equilibrium throughout the performed commercially (Covance Research Products). To NEUROSCIENCE vertebrates. Projecting from the apical surface of a hair cell, the demonstrate immunoreactivity, preliminary and production bundle comprises some 20–300 rigid, cylindrical stereocilia from bleeds were tested against preimmune sera by immunoblotting. Ϸ1toϷ50 ␮m in length. The stereocilia grow successively longer Preimmune sera displayed only weak, nonspecific binding to along one axis of the hexagonal array in which they are packed, isolated brain and cochlear proteins, whereas antisera 1041, so that a bundle displays a beveled top (1). In the developing ear, 1028, and 1029 showed little background but strong reactions a single kinocilium endowed with an axoneme marks the center with ERM proteins. Although both antisera against chicken of the bundle’s tall edge. This organelle is not essential for radixin produced similar results in immunoblotting and immu- nocytochemical labeling, antiserum 1041 generally yielded stron- mechanoelectrical transduction, however, for it degenerates in ger signals. This antiserum was therefore used in all of the the mature mammalian cochlea and can be dissected away immunocytochemical experiments reported here, save for label- without an obvious effect on mechanosensitivity (2). ing of zebrafish hair bundles, for which antiserum 1029 proved The normal hair bundle plays an essential role in the process superior. All antisera were used without further purification. of mechanoelectrical transduction (3). Moreover, many forms of genetic, traumatic, pharmacological, and geriatric deafness and Immunoblotting. Precast 4–20% Tris-glycine gels were used for dysequilibrium stem from bundle degeneration. Identification of the initial characterization of sera. Peptide competition and the hair bundle’s biochemical constituents is therefore essential immunoprecipitation experiments involved 6% Tris-glycine gels. for a complete understanding of normal and pathological hear- Electrophoresis was conducted at 4°C for2hat125Vwith ing and balance. Although a hair bundle contains hundreds of Tris͞glycine͞SDS running buffer containing 1 mM EDTA. proteins (4), only 20 or so have been identified. Biochemical, Proteins were transferred at 4°C for 80 min at 85 V to nitrocel- immunocytochemical, genetic, and physiological techniques are lulose membranes, which were washed in cold PBS containing therefore being applied intensively to recognize the components 0.1% Tween 20, the medium used in all subsequent steps. After essential to mechanoelectrical transduction. having been blocked with 5% nonfat dry milk, membranes were In the course of analyzing the proteins isolated from hair incubated for3hatroom temperature with the appropriate bundles of the bullfrog’s sacculus by PAGE, we noted one with antisera. They were then washed and exposed for 1 h to an unusual feature (4). A molecule of an apparent molecular Ϸ horseradish peroxidase-conjugated donkey anti-rabbit immuno- mass of 77 kDa seemed to occur at only a modest concentration globin (Amersham Pharmacia Biosciences) at a dilution of when assayed by silver staining. When bundle components were 1:10,000. Finally, the membranes were washed, developed, and instead detected after labeling with N-hydroxysulfosuccinim- exposed. idobiotin; however, the protein became prominent. Because N-hydroxysuccinimides attack amino groups, this behavior sug- Peptide Competition Experiments. To prepare samples for immu- gested that the protein is especially rich in lysine residues. The noblotting, brains were dissected from chickens 1–2 weeks of age labeling pattern of the substance indicated that it is an intracel- and Ϸ1 g of tissue was treated with 10 ml of lysis solution lular protein poorly extracted by nonionic detergent (4), as might containing 150 mM NaCl, 1% Triton X-100, and 40 mM Tris, pH be expected for a component of the cytoskeleton or the sub- 7.4, with a protease inhibitor mixture (EDTA-free Complete, membrane cortex. Although these features are scarcely diagnos- tic, they are characteristic of members of the ezrin-radixin- moesin (ERM) protein family (5–8). Moreover, proteins of this Abbreviation: ERM, ezrin-radixin-moesin. family are often constituents of epithelial cells, and especially of *To whom correspondence should be addressed at: The Rockefeller University, Box 314, their apical protrusions such as the microvilli from which 1230 York Avenue, New York, NY 10021-6399. E-mail: [email protected]. stereocilia originate (1). We have therefore inquired in the © 2004 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0308620100 PNAS ͉ February 24, 2004 ͉ vol. 101 ͉ no. 8 ͉ 2601–2606 Downloaded by guest on October 2, 2021 Roche). Thirty chicken cochleae were treated with 200 ␮l of lysis incubation with primary antiserum, all steps were conducted at solution. Brush borders for protein extraction were obtained by room temperature. After a 30-min wash in PBS, cells were following a published protocol (10) that was simplified by observed in PBS with a laser-scanning confocal microscope. omission of the sucrose gradient and use of intestinal villi as a For labeling of filamentous actin, Alexa Fluor 568-phalloidin crude sample. Approximately 1 ml of sedimented intestinal villi (Molecular Probes) was added at a concentration of 50 ng͞ml was resuspended in 10 ml of lysis solution. Solubilization was during the final 30 min of the incubation with secondary performed by dispersing each sample with a glass homogenizer antibodies. For staining of nuclei in preparations of intestinal and incubating for 30 min at 4°C. Each sample was then epithelial cells, TO-PRO-3 iodide (Molecular Probes) was in- centrifuged for 10 min at 4°C at 12,000 ϫ g and the supernatant cluded at a concentration of 1 ␮g͞ml throughout the secondary was retained. After protein concentrations had been deter- antibody incubation. mined, 25 ␮g of brush-border, brain, or cochlear protein was loaded per lane on two identical gels for each antiserum to be Electron Microscopic Immunocytochemistry. Cochleae from chick- tested. After electrophoresis and transfer had been conducted as ens Ϸ3 weeks old were dissected in artificial avian perilymph described above, membranes were blocked overnight. For each consisting of 145 mM Naϩ,2mMKϩ,2mMCa2ϩ,2mMMg2ϩ, Ϫ Ϫ pair of identical membranes, two solutions were prepared: one 120 mM Cl ,22mMD-glucuronate, 11 mM HCO3 , 0.1 mM 2Ϫ containing antiserum at a dilution of 1:2,500 in PBS containing HPO4 , 5 mM sucrose, 5 mM D-glucose, 1 mM sodium pyru- 5% nonfat dry milk and 0.1% Tween 20, the other with the same vate, 1 mM creatine, and 5 mM Hepes, pH 7.4. After removal of constituents plus 100 ␮g͞ml peptide 1041, 1028, or 1029. Solu- tions were incubated at room temperature for 1 h before application to membranes and incubation for3hatroom temperature with mild agitation. The immunoblots were then washed and developed as described above. Immunoprecipitation and Immunoblotting. We immunoprecipi- tated proteins from the brain or
Recommended publications
  • Mir‑200B Regulates Breast Cancer Cell Proliferation and Invasion by Targeting Radixin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 19: 2741-2750, 2020 miR‑200b regulates breast cancer cell proliferation and invasion by targeting radixin JIANFEN YUAN1, CHUNHONG XIAO2, HUIJUN LU1, HAIZHONG YU1, HONG HONG1, CHUNYAN GUO1 and ZHIMEI WU1 1Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001; 2Department of Clinical Laboratory, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China Received December 7, 2018; Accepted October 15, 2019 DOI: 10.3892/etm.2020.8516 Abstract. Radixin is an important member of the miR-200b was lower in MDA-MB-231 cells compared with Ezrin-Radixin-Moesin protein family that is involved in cell that in MCF-7 cells. miR-200b mimic or siRNA-radixin invasion, metastasis and movement. microRNA (miR)-200b transfection downregulated the expression of radixin in is a well-studied microRNA associated with the develop- MDA-MB-231 cells and attenuated the invasive and prolifera- ment of multiple tumors. Previous bioinformatics analysis tive abilities of these cells. miR-200b-knockdown and radixin has demonstrated that miR-200b has a complementary overexpression were associated with enhanced cell invasion in binding site in the 3'-untranslated region of radixin mRNA. breast cancer. In conclusion, miR-200b regulates breast cancer The present study aimed to investigate the role of miR-200b cell proliferation and invasion by targeting radixin expression. in regulating radixin expression, cell proliferation and invasion in breast cancer. Breast cancer tissues at different Introduction Tumor-Node-Metastasis (TNM) stages were collected; breast tissues from patients with hyperplasia were used as a control. Breast cancer (BC) is one of the most common malignant miR-200b and radixin mRNA expression levels were tested tumors among women in the world that seriously threaten by reverse transcription-quantitative PCR.
    [Show full text]
  • Chapter 1. Epithelium (Epithelia)
    Chapter 1. Epithelium (Epithelia) ▶ Epithelia separate the internal environment from the external environment by forming tightly cohesive sheets of polarized cells held together by specialized junctional complexes and cell adhesion molecules ▶ Epithelial cells participate in embryo morphogenesis and organ development This chapter address the structural characteristics of epithelial cells General Characteristics of epithelia 1) tightly cohesive sheet of cells that covers or lines body surface (skin, intestine, secretory ducts) and forms functional units of secretory gland (salivary gland, liver) 2) basic function; protection (skin) ; absorption (small and large intestine) ; transport of material at the surface (mediated by cilia) ; secretion (gland) ; excretion (tubules of kidney) ; gas exchange (lung alveolus) ; gliding between surface (mesothelium, 중피세포) 3) Most epithelial cells renew continuously by mitosis (regeneration) 4) Epithelia lack direct blood and lymphatic supply (avascular; no blood supply). Nutrients are delivered by diffusion 5) Epithelial cells have no free intercellular substance (in contrast to connective tissues) (Control of permeability) 6) The cohesive nature of an epithelium is maintained by cell adhesion molecules and junctional complexes (attachment). 7) Epithelia are anchored to a basal lamina (바닥판). The basal lamina and connective tissues components cooperate to form basement membrane (기저막) 8) Epithelia have structural and functional polarity Epithelial Tissue - Characteristics & Functions https://www.youtube.com/watch?v=xI2hsH-ZHR4
    [Show full text]
  • Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle
    International Journal of Molecular Sciences Review Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle Itallia Pacentine, Paroma Chatterjee and Peter G. Barr-Gillespie * Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; [email protected] (I.P.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +1-503-494-2936 Received: 12 December 2019; Accepted: 1 January 2020; Published: 3 January 2020 Abstract: Sensory hair cells of the inner ear rely on the hair bundle, a cluster of actin-filled stereocilia, to transduce auditory and vestibular stimuli into electrical impulses. Because they are long and thin projections, stereocilia are most prone to damage at the point where they insert into the hair cell’s soma. Moreover, this is the site of stereocilia pivoting, the mechanical movement that induces transduction, which additionally weakens this area mechanically. To bolster this fragile area, hair cells construct a dense core called the rootlet at the base of each stereocilium, which extends down into the actin meshwork of the cuticular plate and firmly anchors the stereocilium. Rootlets are constructed with tightly packed actin filaments that extend from stereocilia actin filaments which are wrapped with TRIOBP; in addition, many other proteins contribute to the rootlet and its associated structures. Rootlets allow stereocilia to sustain innumerable deflections over their lifetimes and exemplify the unique manner in which sensory hair cells exploit actin and its associated proteins to carry out the function of mechanotransduction. Keywords: rootlet; actin; stereocilia; hair cell 1. Introduction Eukaryotic cells use actin as a basic building block of the cytoskeleton.
    [Show full text]
  • Purification and Initial Protein Characterization of Hair Cell Stereocilia
    Proc. Nail. Acad. Sci. USA Vol. 86, pp. 4973-4977, July 1989 Cell Biology "Bundle blot" purification and initial protein characterization of hair cell stereocilia (mechanotransduction/auditory system/vestibular system/cytoskeleton/ummunocytochemistry) GORDON M. G. SHEPHERD, BARBARA A. BARRES, AND DAVID P. COREY Neuroscience Group, Howard Hughes Medical Institute, and Department of Neurology, Wellman 414, Massachusetts General Hospital, Fruit Street, Boston, MA 02114; and Program in Neuroscience, Harvard Medical School, Boston, MA 02115 Communicated by Thomas S. Reese, April 4, 1989 ABSTRACT Stereocilia were isolated from bullfrog (Rana To study the biochemistry of stereocilia we developed a catesbeiana) saccular hair cells by nitrocellulose adhesion. The purification technique that exploits the adhesion of the apical high purity and high yield of the preparation were demon- ends of stereocilia to nitrocellulose paper and the mechanical strated by microscopy. SDS/PAGE of stereociliary proteins fiagility of the narrow basal ends. A related strategy has been resolved 12-15 major bands. Actin, previously identified as a used to adsorb small numbers of piscine stereocilia onto cov- component of the stereociliary core, was identified in purified erslips for ultrastructural studies (13). The nitrocellulose adhe- stereocilia as a band comi rating with authentic actin and by sion method, which we term "bundle blot" purification, gave a phalloidin labeling of intact isolated stereocilia. Fimbrin was sufficiently high yield of pure stereocilia for biochemical anal- identified in immunoblots of purified stereocilia. The most ysis. Some results have appeared in preliminary form (14). abundant other proteins migrated at 11, 14, 16-19, 27, and 36 kDa. Demembranated stereociliary cores consisted primarily METHODS of protein bands corresponding to actin and fimbrin and several proteins ranging from 43 to 63 kDa.
    [Show full text]
  • And Heterotypic Interaction of Merlin and Ezrin
    Journal of Cell Science 112, 895-904 (1999) 895 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0140 Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin Mikaela Grönholm1,*, Markku Sainio1, Fang Zhao1, Leena Heiska1, Antti Vaheri2 and Olli Carpén1 Departments of 1Pathology and 2Virology, University of Helsinki, Haartman Institute, PO Box 21 (Haartmaninkatu 3), FIN-00014 Helsinki *Author for correspondence (e-mail: mikaela.gronholm@helsinki.fi) Accepted 23 December 1998; published on WWW 25 February 1999 SUMMARY Ezrin, radixin and moesin (ERM) are homologous proteins, involves interaction between the amino- and carboxy- which are linkers between plasma membrane components termini. The amino-terminal association domain of merlin and the actin-containing cytoskeleton. The ERM protein involves residues 1-339 and has similar features with the family members associate with each other in a homotypic amino-terminal association domain of ezrin. The carboxy- and heterotypic manner. The neurofibromatosis 2 (NF2) terminal association domain cannot be mapped as precisely tumor suppressor protein merlin (schwannomin) is as in ezrin, but it requires residues 585-595 and a more structurally related to ERM members. Merlin is involved amino-terminal segment. Unlike ezrin, merlin does not in tumorigenesis of NF2-associated and sporadic require activation for self-association but native merlin schwannomas and meningiomas, but the tumor suppressor molecules can interact with each other. Heterodimerization mechanism is poorly understood. We have studied the between merlin and ezrin, however, occurs only following ability of merlin to self-associate and bind ezrin. Ezrin was conformational alterations in both proteins.
    [Show full text]
  • The Role of the C-Terminus Merlin in Its Tumor Suppressor Function Vinay Mandati
    The role of the C-terminus Merlin in its tumor suppressor function Vinay Mandati To cite this version: Vinay Mandati. The role of the C-terminus Merlin in its tumor suppressor function. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112140. tel-01124131 HAL Id: tel-01124131 https://tel.archives-ouvertes.fr/tel-01124131 Submitted on 19 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 TABLE OF CONTENTS Abbreviations ……………………………………………………………………………...... 8 Resume …………………………………………………………………………………… 10 Abstract …………………………………………………………………………………….. 11 1. Introduction ………………………………………………………………………………12 1.1 Neurofibromatoses ……………………………………………………………………….14 1.2 NF2 disease ………………………………………………………………………………15 1.3 The NF2 gene …………………………………………………………………………….17 1.4 Mutational spectrum of NF2 gene ………………………………………………………..18 1.5 NF2 in other cancers ……………………………………………………………………...20 2. ERM proteins and Merlin ……………………………………………………………….21 2.1 ERMs ……………………………………………………………………………………..21 2.1.1 Band 4.1 Proteins and ERMs …………………………………………………………...21 2.1.2 ERMs structure ………………………………………………………………………....23 2.1.3 Sub-cellular localization and tissue distribution of ERMs ……………………………..25 2.1.4 ERM proteins and their binding partners ……………………………………………….25 2.1.5 Assimilation of ERMs into signaling pathways ………………………………………...26 2.1.5. A. ERMs and Ras signaling …………………………………………………...26 2.1.5. B. ERMs in membrane transport ………………………………………………29 2.1.6 ERM functions in metastasis …………………………………………………………...30 2.1.7 Regulation of ERM proteins activity …………………………………………………...31 2.1.7.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • ERM Protein Family
    Cell Biology 2018; 6(2): 20-32 http://www.sciencepublishinggroup.com/j/cb doi: 10.11648/j.cb.20180602.11 ISSN: 2330-0175 (Print); ISSN: 2330-0183 (Online) Structure and Functions: ERM Protein Family Divine Mensah Sedzro 1, †, Sm Faysal Bellah 1, 2, †, *, Hameed Akbar 1, Sardar Mohammad Saker Billah 3 1Laboratory of Cellular Dynamics, School of Life Science, University of Science and Technology of China, Hefei, China 2Department of Pharmacy, Manarat International University, Dhaka, Bangladesh 3Department of Chemistry, Govt. M. M. University College, Jessore, Bangladesh Email address: *Corresponding author † These authors contributed equally to this work To cite this article: Divine Mensah Sedzro, Sm Faysal Bellah, Hameed Akbar, Sardar Mohammad Saker Billah. Structure and Functions: ERM Protein Family. Cell Biology . Vol. 6, No. 2, 2018, pp. 20-32. doi: 10.11648/j.cb.20180602.11 Received : September 15, 2018; Accepted : October 6, 2018; Published : October 29, 2018 Abstract: Preservation of the structural integrity of the cell depends on the plasma membrane in eukaryotic cells. Interaction between plasma membrane, cytoskeleton and proper anchorage influence regular cellular processes. The needed regulated connection between the membrane and the underlying actin cytoskeleton is therefore made available by the ERM (Ezrin, Radixin, and Moesin) family of proteins. ERM proteins also afford the required environment for the diffusion of signals in reactions to extracellular signals. Other studies have confirmed the importance of ERM proteins in different mode organisms and in cultured cells to emphasize the generation and maintenance of specific domains of the plasma membrane. An essential attribute of almost all cells are the specialized membrane domains.
    [Show full text]
  • Quadriceps Myopathy Caused by Skeletal Muscle- Specific Ablation of Cyto-Actin
    Research Article 951 Quadriceps myopathy caused by skeletal muscle- specific ablation of cyto-actin Kurt W. Prins1, Jarrod A. Call2, Dawn A. Lowe2 and James M. Ervasti1,* 1Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA 2Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA *Author for correspondence ([email protected]) Accepted 8 November 2010 Journal of Cell Science 124, 951-957 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.079848 Summary Quadriceps myopathy (QM) is a rare form of muscle disease characterized by pathological changes predominately localized to the quadriceps. Although numerous inheritance patterns have been implicated in QM, several QM patients harbor deletions in dystrophin. Two defined deletions predicted loss of functional spectrin-like repeats 17 and 18. Spectrin-like repeat 17 participates in actin-filament binding, and thus we hypothesized that disruption of a dystrophin–cytoplasmic actin interaction might be one of the mechanisms underlying QM. To test this hypothesis, we generated mice deficient for cyto-actin in skeletal muscles (Actb-msKO). Actb-msKO mice presented with a progressive increase in the proportion of centrally nucleated fibers in the quadriceps, an approximately 50% decrease in dystrophin protein expression without alteration in transcript levels, deficits in repeated maximal treadmill tests, and heightened sensitivity to eccentric contractions. Collectively,
    [Show full text]
  • Missense Mutations in the NF2 Gene Result in the Quantitative Loss of Merlin Protein and Minimally Affect Protein Intrinsic Function
    Missense mutations in the NF2 gene result in the quantitative loss of merlin protein and minimally affect protein intrinsic function Chunzhang Yang, Ashok R. Asthagiri, Rajiv R. Iyer, Jie Lu, David S. Xu, Alexander Ksendzovsky, Roscoe O. Brady1, Zhengping Zhuang1, and Russell R. Lonser1 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Contributed by Roscoe O. Brady, February 9, 2011 (sent for review December 29, 2010) Neurofibromatosis type 2 (NF2) is a multiple neoplasia syndrome Results and is caused by a mutation of the NF2 tumor suppressor gene Quantitative Tumor Suppressor Protein Levels and mRNA Expression. that encodes for the tumor suppressor protein merlin. Biallelic NF2 To assess the levels of merlin expression in NF2 tumors, we gene inactivation results in the development of central nervous quantitatively measured merlin expression in microdissected system tumors, including schwannomas, meningiomas, ependy- tumors from NF2 patients using Western blot analysis (Fig. 1A). momas, and astrocytomas. Although a wide variety of missense Quantitative protein analysis revealed a significant reduction in germline mutations in the coding sequences of the NF2 gene can merlin expression in NF2-associated meningiomas and schwan- cause loss of merlin function, the mechanism of this functional loss nomas (95% reduction in merlin expression; seven tumors) com- is unknown. To gain insight into the mechanisms underlying loss pared with normal adjacent central nervous system tissue. of merlin function in NF2, we investigated mutated merlin homeo- Consistent with Western blot analysis of merlin expression in NF2- stasis and function in NF2-associated tumors and cell lines.
    [Show full text]
  • LMO7 Deficiency Reveals the Significance of the Cuticular Plate For
    ARTICLE https://doi.org/10.1038/s41467-019-09074-4 OPEN LMO7 deficiency reveals the significance of the cuticular plate for hearing function Ting-Ting Du1, James B. Dewey2, Elizabeth L. Wagner1, Runjia Cui3, Jinho Heo4, Jeong-Jin Park5, Shimon P. Francis1, Edward Perez-Reyes6, Stacey J. Guillot7, Nicholas E. Sherman5, Wenhao Xu8, John S Oghalai2, Bechara Kachar3 & Jung-Bum Shin1 Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor 1234567890():,; two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss. 1 Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA. 2 Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA. 3 National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD 20892, USA. 4 Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
    [Show full text]
  • Male Ducts.Pdf (419.1Kb)
    Male Ducts The male ducts consist of a complex system of tubules that link each testis to the urethra, through which the exocrine secretion, semen, is conducted to the exterior during ejaculation. The duct system consists of the tubuli recti (straight tubules), rete testis, ductus efferentes, ductus epididymis, ductus deferens, ejaculatory ducts, and prostatic, membranous, and penile urethra. Tubuli Recti Near the apex of each testicular lobule, the seminiferous tubules join to form short, straight tubules called the tubuli recti. The lining epithelium has no germ cells and consists only of Sertoli cells. This simple columnar epithelium lies on a thin basal lamina and is surrounded by loose connective tissue. The lumina of the tubuli recti are continuous with a network of anastomosing channels in the mediastinum, the rete testis. Rete Testis The rete testis is lined by simple cuboidal epithelium in which each of the component cells bears short microvilli and a single cilium on the apical surface. The epithelium lies on a delicate basal lamina. A dense bed of vascular connective tissue surrounds the channels of the rete testis. Ductuli Efferentes In men, 10 to 15 ductuli efferentes emerge from the mediastinum on the posterosuperior surface of the testis and unite the channels of the rete testis with the ductus epididymis. The efferent ductules follow a convoluted course and, with their supporting tissue, make up the initial segment of the head of the epididymis. The luminal border of the efferent ductules shows a characteristic irregular contour due to the presence of alternating groups of tall and short columnar cells.
    [Show full text]