VM Dissertation 2009

Total Page:16

File Type:pdf, Size:1020Kb

VM Dissertation 2009 WAVELET BASED IMAGE COMPRESSION INTEGRATING ERROR PROTECTION via ARITHMETIC CODING with FORBIDDEN SYMBOL and MAP METRIC SEQUENTIAL DECODING with ARQ RETRANSMISSION By Veruschia Mahomed BSc. (Electronic Engineering) Submitted in fulfilment of the requirements for the Degree of Master of Science in Electronic Engineering in the School of Electrical, Electronic and Computer Engineering at the University of KwaZulu-Natal, Durban December 2009 Preface The research described in this dissertation was performed at the University of KwaZulu-Natal (Howard College Campus), Durban, over the period July 2005 until January 2007 as a full time dissertation and February 2007 until July 2009 as a part time dissertation by Miss. Veruschia Mahomed under the supervision of Professor Stanley Mneney. This work has been generously sponsored by Armscor and Morwadi. I hereby declare that all the material incorporated in this dissertation is my own original unaided work except where specific acknowledgment is made by name or in the form of a reference. The work contained herein has not been submitted in whole or part for a degree at any other university. Signed : ________________________ Name : Miss. Veruschia Mahomed Date : 30 December 2009 As the candidate’s supervisor I have approved this thesis for submission. Signed : ________________________ Name : Prof. S.H. Mneney Date : ii Acknowledgements First and foremost, I wish to thank my supervisor, Professor Stanley Mneney, for his supervision, encouragement and deep insight during the course of this research and for allowing me to pursue a dissertation in a field of research that I most enjoy. His comments throughout were invaluable, constructive and insightful and his willingness to set aside his time to assist me is most appreciated. I would also like to express my sincere thanks to my dear family for their continued support, encouragement and invaluable assistance throughout this dissertation. To my parents, Si and Romona, thank you for providing me with undying support and believing in me when I myself didn’t. Thanks to my dearest sister Katy, for constantly encouraging me and forcing me to complete. Furthermore, I express my appreciation to all staff and fellow post-graduate students who have assisted me in any way and for the exciting non-work related discussions and activities. Finally, special thanks go out to the sponsor’s Armscor and Morwadi and its representatives Ms. Franzette Vorster and Mr. Peter Handley for the funding of my research and for the regular visits and discussions. iii Publications The following publications are based on the work presented in this dissertation. V. Mahomed and S.H. Mneney, “ Wavelet Based Compression: The New Still Image Compression Technique ,” Pattern Recognition Association of South Africa (PRASA), Cape Town, South Africa, Nov. 2005. V. Mahomed and S.H. Mneney, “ Wavelet Based Image Compression and Transmission over Error-Prone Channels ,” South African Telecommunications and Networking Applications Conference (SATNAC), Cape Town, South Africa, Sept. 2006. V. Mahomed and S.H. Mneney, “ Robust EZW and SPIHT via Arithmetic Coding with Forbidden Symbol and MAP Decoding ,” Pattern Recognition Association of South Africa (PRASA), Parys, South Africa, Nov. 2006. V. Mahomed and S.H. Mneney, “ Robust SPIHT via Serially Concatenated Arithmetic Coding with Convolutional Coding and Sequential Decoding ,” Military Information and Communications Symposium of South Africa (MICSSA), CSIR, Pretoria, South Africa, July 2007. iv Abstract The phenomenal growth of digital multimedia applications has forced the communications industry to re-look at the manner in which multimedia is transmitted and stored. Multimedia technology will in the future produce such high excessive volumes of data traffic that it will exceed its network capacity, thereby prompting greater focus on higher compression techniques coupled with error protection mechanisms. These techniques and mechanisms will provide an efficient multimedia transmission infrastructure needed to sustain the growth whist minimising the impact of network capacity. This dissertation describes a myriad of compression techniques for image and videos used currently, with particular focus on the industry progression towards wavelet compression. The dissertation then commences through a review of wavelets and wavelet theory fundamentals for the use of compression before proceeding to outline the advanced wavelet coding algorithms developed for efficient image and video compression. Thereafter, evaluations of the wavelet coders are assessed with recommendations of two coders, EZW and SPIHT, for use in the proposed codec as low-bitrate compression coders. The dissertation reviews and examines the wireless transmission medium as the preferred medium for error protection of the compressed bitstream. The two wireless mediums selected are the additive white Gaussian noise channel, and the Rayleigh multipath fading channel. The channels are modelled to induce errors in the compressed bitstreams whereby the proposed codec can in turn offer protection of the bitstream for successful transmission. This dissertation presents a codec offering low-bitrate compression via the use of the wavelet coding algorithms of EZW and SPIHT, combined with error protection incorporating error detection and correction to determine and process errors induced by the wireless channels. Error protection is segmented into error detection and error correction, with error detection involving integer arithmetic coding with forbidden symbol and convolutional coding, and error correction using automatic repeat request (ARQ) retransmission and maximum a posteriori (MAP) metric sequential decoding. Error detection via arithmetic coding with forbidden symbol, is able to identify errors that have been produced by noisy channel impairments and interferences during the transmission. Error correction is designed to correct, resolve and rectify the identified errors. The MAP metric sequential decoding concept is multifaceted, as it involves sequential decoding that exploits the optimal stack algorithm that uses a greedy tree search and the MAP decoding metric, which is in turn computed using a complex set of a priori and a posteriori statistical v probabilities. ARQ retransmission is used as a double error correction mechanism in the event that the MAP decoding fails; it is invoked and requests a retransmission of the erroneous bitstream. The proposed codec is then compared to current three systems arithmetic coding and decoding, convolutional coding with MAP decoding and arithmetic coding, convolutional coding with MAP decoding and arithmetic decoding, through multiple simulations focusing on image quality and erasure performances. Results show that the proposed codec is competitive and its performance surpasses three systems used in the evaluation. The proposed ARQ-MAP scheme proved better and showed greater improvement in error-free decoding than the three systems. The highly successful coupling of error detection, using the forbidden symbol and error correction using MAP metric sequential decoding showed immense potential and ability for error-free compression and transmission of images and video. vi Table of Contents Preface ii Acknowledgements iii Publications iv Abstract v Table of Contents vii List of Figures xi List of Tables xvi List of Acronyms xvii CHAPTER 1 - INTRODUCTION 20 1.1 COMPRESSION 21 1.1.1 Lossless Compression 21 1.1.2 Lossy Compression 22 1.2 WAVELETS 23 1.3 ERROR RESILIENCE 23 1.4 LAYOUT of DISSERTATION 25 1.5 EXECUTIVE SUMMARY 27 CHAPTER 2 - CURRENT COMPRESSION STANDARDS 29 2.1 STILL IMAGE COMPRESSION 29 2.1.1 JPEG 29 2.1.2 JPEG 2000 32 2.2 VIDEO COMPRESSION 34 2.2.1 MPEG 34 2.2.2 MPEG4 36 2.2.3 H.263+ 39 2.2.4 H.264 / MPEG4 part 10 AVC 40 2.3 PERFORMANCE METRICS 41 2.4 PERFORMANCE 43 2.4.1 Still Image Compression Standards 43 2.4.2 Video compression Standards 46 2.5 SUMMARY 47 CHAPTER 3 - WAVELET COMPRESSION 48 3.1 WAVELET THEORY 48 3.1.1 Fourier Transform 48 vii 3.1.2 Wavelet Transform 49 3.1.3 Discrete Wavelet Transform 51 3.1.4 Filter Banks 52 3.1.5 Subband Coding 54 3.1.6 Multi-resolution Analysis 54 3.1.7 Fast Wavelet Transform 57 3.2 WAVELET FAMILIES 62 3.2.1 Haar Wavelet 64 3.2.2 Daubechies Wavelet 64 3.2.3 Coiflet Wavelet 65 3.2.4 Symlet Wavelet 66 3.2.5 Meyer Wavelet 66 3.2.6 Morlet Wavelet 67 3.2.7 Mexican Hat Wavelet 67 3.2.8 Wavelet Family Properties 68 3.3 WAVELET IMAGE CODING 70 3.3.1 Embedded Zerotree Wavelet 70 3.3.2 Set Partitioning in Hierarchical Trees 74 3.3.3 Space Frequency Quantisation 76 3.3.4 Stack-Run Image Coding 77 3.3.5 Embedded Conditional Entropy Coding of Wavelet Coefficients 78 3.4 PERFORMANCE 80 3.4.1 Various Wavelet Coding Schemes 80 3.4.2 EZW and SPIHT 81 3.5 SUMMARY 85 CHAPTER 4 - WIRELESS CHANNELS 87 4.1 ADDITIVE WHITE GAUSSIAN NOISE CHANNEL MODEL 87 4.2 MULTIPATH FADING CHANNELS 89 4.3 PATH LOSS 90 4.4 SHADOWING 90 4.5 FADING CHANNELS 91 4.5.1 Large Scale Fading Channels 91 4.5.2 Small Scale Fading Channels 92 4.5.3 Flat Fading Channels 92 4.5.4 Frequency-Selective Fading Channels 93 4.5.5 Fast Fading Channels 94 4.5.6 Slow Fading Channels 94 viii 4.6 RAYLEIGH MULTIPATH FADING CHANNEL MODEL 95 4.7 PERFORMANCE 96 4.7.1 Theoretical AWGN Channel 98 4.7.2 Theoretical Rayleigh Multipath Fading Channel 99 4.7.3 EZW and SPIHT over AWGN Channel 99 4.7.4 EZW and SPIHT over Rayleigh Multipath Fading Channel 102 4.8 SUMMARY 105 CHAPTER 5 - ERROR PROTECTION 106 5.1 ERROR DETECTION USING ARITHMETIC CODING WITH FORBIDDEN
Recommended publications
  • A General Scheme for Dithering Multidimensional Signals, and a Visual Instance of Encoding Images with Limited Palettes
    Journal of King Saud University – Computer and Information Sciences (2014) 26, 202–217 King Saud University Journal of King Saud University – Computer and Information Sciences www.ksu.edu.sa www.sciencedirect.com A General scheme for dithering multidimensional signals, and a visual instance of encoding images with limited palettes Mohamed Attia a,b,c,*,1,2, Waleed Nazih d,3, Mohamed Al-Badrashiny e,4, Hamed Elsimary d,3 a The Engineering Company for the Development of Computer Systems, RDI, Giza, Egypt b Luxor Technology Inc., Oakville, Ontario L6L6V2, Canada c Arab Academy for Science & Technology (AAST), Heliopolis Campus, Cairo, Egypt d College of Computer Engineering and Sciences, Salman bin Abdulaziz University, AlKharj, Saudi Arabia e King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia Received 12 March 2013; revised 30 August 2013; accepted 5 December 2013 Available online 12 December 2013 KEYWORDS Abstract The core contribution of this paper is to introduce a general neat scheme based on soft Digital signal processing; vector clustering for the dithering of multidimensional signals that works in any space of arbitrary Digital image processing; dimensionality, on arbitrary number and distribution of quantization centroids, and with a comput- Dithering; able and controllable quantization noise. Dithering upon the digitization of one-dimensional and Multidimensional signals; multi-dimensional signals disperses the quantization noise over the frequency domain which renders Quantization noise; it less perceptible by signal processing systems including the human cognitive ones, so it has a very Soft vector clustering beneficial impact on vital domains such as communications, control, machine-learning, etc.
    [Show full text]
  • Geodesic Image and Video Editing
    Geodesic Image and Video Editing ANTONIO CRIMINISI and, TOBY SHARP and, CARSTEN ROTHER Microsoft Research Ltd, CB3 0FB, Cambridge, UK and PATRICK PEREZ´ Technicolor Research and Innovation, F-35576 Cesson-Sevign´ e,´ France This paper presents a new, unified technique to perform general edge- 1. INTRODUCTION AND LITERATURE SURVEY sensitive editing operations on n-dimensional images and videos efficiently. The first contribution of the paper is the introduction of a generalized Recent years have seen an explosion of research in Computational geodesic distance transform (GGDT), based on soft masks. This provides a Photography, with many exciting new techniques been invented to unified framework to address several, edge-aware editing operations. Di- aid users accomplish difficult image and video editing tasks effec- verse tasks such as de-noising and non-photorealistic rendering, are all tively. Much attention has been focused on: segmentation [Boykov dealt with fundamentally the same, fast algorithm. Second, a new, geodesic, and Jolly 2001; Bai and Sapiro 2007; Grady and Sinop 2008; Li symmetric filter (GSF) is presented which imposes contrast-sensitive spa- et al. 2004; Rother et al. 2004; Sinop and Grady 2007; Wang et al. tial smoothness into segmentation and segmentation-based editing tasks 2005], bilateral filtering [Chen et al. 2007; Tomasi and Manduchi (cutout, object highlighting, colorization, panorama stitching). The effect 1998; Weiss 2006] and anisotropic diffusion [Perona and Malik of the filter is controlled by two intuitive, geometric parameters. In contrast 1990], non-photorealistic rendering [Bousseau et al. 2007; Wang to existing techniques, the GSF filter is applied to real-valued pixel likeli- et al.
    [Show full text]
  • Backward Coding of Wavelet Trees with Fine-Grained Bitrate Control
    JOURNAL OF COMPUTERS, VOL. 1, NO. 4, JULY 2006 1 Backward Coding of Wavelet Trees with Fine-grained Bitrate Control Jiangling Guo School of Information Science and Technology, Beijing Institute of Technology at Zhuhai, Zhuhai, P.R. China Email: [email protected] Sunanda Mitra, Brian Nutter and Tanja Karp Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, USA Email: {sunanda.mitra, brian.nutter, tanja.karp}@ttu.edu Abstract—Backward Coding of Wavelet Trees (BCWT) is Recently, several new wavelet-tree-based codecs have an extremely fast wavelet-tree-based image coding algo- been developed, such as LTW [7] and Progres [8], which rithm. Utilizing a unique backward coding algorithm, drastically improved the computational efficiency in BCWT also provides a rich set of features such as resolu- terms of coding speed. In [9] we have presented our tion-scalability, extremely low memory usage, and extremely newly developed BCWT codec, which is the fastest low complexity. However, BCWT in its original form inher- its one drawback also existing in most non-bitplane codecs, wavelet-tree-based codec we have studied to date with namely coarse bitrate control. In this paper, two solutions the same compression performance as SPIHT. With its for improving the bitrate controllability of BCWT are pre- unique backward coding, the wavelet coefficients from sented. The first solution is based on dual minimum quanti- high frequency subbands to low frequency subbands, zation levels, allowing BCWT to achieve fine-grained bi- BCWT also provides a rich set of features such as low trates with quality-index as a controlling parameter; the memory usage, low complexity and resolution scalability, second solution is based on both dual minimum quantiza- usually lacking in other wavelet-tree-based codecs.
    [Show full text]
  • Quality Assurance in Diagnostic Radiology
    AAPM REPORT NO. 74 QUALITY CONTROL IN DIAGNOSTIC RADIOLOGY Report of Task Group #12 Diagnostic X-ray Imaging Committee Members S. Jeff Shepard, Chairman Pei-Jan Paul Lin, Co-Chairman John M. Boone Dianna D. Cody Jane R. Fisher G. Donald Frey Hy Glasser* Joel E. Gray Arthur G. Haus Lance V. Hefner Richard L. Holmes, Jr. Robert J. Kobistek Frank N. Ranallo Philip L. Rauch Raymond P. Rossi* J. Anthony Seibert Keith J. Strauss Orhan H. Suleiman Joel R. Schenck Stephen K. Thompson July 2002 Published for the American Association of Physicists in Medicine by Medical Physics Publishing *Deceased DISCLAIMER: This publication is based on sources and information believed to be reliable, but the AAPM and the editors disclaim any warranty or liability based on or relating to the contents of this publication. The AAPM does not endorse any products, manufacturers, or suppliers. Nothing in this publication should be interpreted as implying such endorsement. Further copies of this report ($15 prepaid) may be obtained from: Medical Physics Publishing 4513 Vernon Blvd. Madison, WI 53705-4964 Telephone: 1-800-442-5778 or 608-262-4021 Fax: 608-265-2121 Email: [email protected] Web site: www.medicalphysics.org International Standard Book Number: 1-888340-33-9 International Standard Serial Number: 0271-7344 © 2002 by American Association of Physicists in Medicine One Physics Ellipse College Park, MD 20740-3843 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo- copying, recording, or otherwise) without the prior written permission of the publisher.
    [Show full text]
  • Synthetic Colour Test Image for Objective Quality Assessment of Digital Codecs
    Synthetic Colour Test Image for Objective Quality Assessment of Digital Codecs Amal Punchihewa , Donald G. Bailey, R. M. Hodgson School of Engineering and Technology, Massey University, Palmerston North, New Zealand ABSTRACT This paper proposes a supplementary colour test image to the standard colour bars used in television and an objective quality metric for bleeding colour artefacts due to codecs. The test image and algorithms can be implemented in any open architecture test environment. The video product or the path under test is stressed using the test image. In addition to the objective measure, the test environment can display the hue and the saturation errors on an emulated vectorscope providing a visual measure of saturation and hue for the original and reconstructed images at a given compression ratio. The test image can be used to evaluate the performance of digital video and television broadcasting facilities and has potential to yield a wide range of compression ratios. The objective quality measure can also be used in the colour codec development process and in benchmarking colour codec performance. INTRODUCTION Television and video broadcasting engineers have been using standard colour bars for testing and adjustment of analogue systems for many years [1]. In digital television broadcasting, video streaming and other multimedia communications, image and video are the dominant components. With limited communication bandwidth and storage capacity in terminal devices, it is necessary to reduce data rates using digital codecs [2]. The techniques and quantisation used in image and video compression codecs introduce distortions known as artefacts. The Digital Fact Book defines artefacts as “particular visible effects, which are a direct result of some technical limitation” [3].
    [Show full text]
  • Caradoc of the North Wind Free
    FREE CARADOC OF THE NORTH WIND PDF Allan Frewin Jones | 368 pages | 05 Apr 2012 | Hachette Children's Group | 9780340999417 | English | London, United Kingdom CARADOC OF THE NORTH WIND PDF As the war. Disaster strikes, and a valued friend suffers Caradoc of the North Wind devastating injury. Branwen sets off on a heroic journey towards destiny in an epic adventure of lovewar and revenge. Join Charlotte and Mia in this brilliant adventure full of princess sparkle and Christmas excitement! Chi ama i libri sceglie Kobo e inMondadori. The description is beautiful, but at times a bit too much, and sometimes at its worst the writing is hard to comprehend completely clearly. I find myself hoping vehemently for another book. It definitely allows the I read this in Caradoc of the North Wind sitting and could not put it down. Fair Wind to Widdershins. This author has published under several versions of his name, including Allan Jones, Frewin Jones, and A. Write a product review. Now he has stolen the feathers Caradoc of the North Wind Doodle, the weather-vane cockerel in charge of the weather. Jun 29, Katie rated it really liked it. Is the other warrior child, Arthur?? More than I thought I would, even. I really cafadoc want to know more, and off author is one that can really take you places. Join us by creating an account and start getting the best experience from our website! Jules Ember was raised hearing legends of wjnd ancient magic of the wicked Alchemist and the good Sorceress. Delivery and Returns see our delivery rates and policies thinking of returning an item? Mar 24, Valentina rated it really liked it.
    [Show full text]
  • Image Filtering and Image Segmentation: an Insight of Evaluation Techniques
    Image Filtering and Image Segmentation: An Insight of Evaluation Techniques Boubakeur BELAROUSSI, BioClinica, [email protected] www.bioclinica.com 1 Topics Objectives BioClinica Validation in Image Processing Validation Methodology Overview of Evaluation criteria Test Data Validation Examples Conclusion 2 Topics Objectives BioClinica Validation in Image Processing Validation Methodology Overview of Evaluation criteria Test Data Validation Examples Conclusion 3 Objectives Set a rigorous evaluation methodology to validate an image processing algorithm Validation framework Choose / Define appropriate datasets Choose / Define the quantitative criteria 4 Topics Objectives BioClinica Validation in Image Processing Validation Methodology Overview of Evaluation criteria Test Data Validation Examples Conclusion 5 BioClinica BioClinica is a technology-oriented Imaging Contract Research Organization (CRO) providing biotechnology and pharmaceutical companies with a unique expertise in the field of medical image analysis in the context of multicenter clinical trials. BioClinica manages the imaging component of clinical trials (Phase I to IV) using its proprietary image processing software technology. This technology enables the introduction of quantitative imaging markers in the design of innovative clinical trials in major diagnostic and therapeutic areas: Central Nervous System (CNS) diseases Neurovascular diseases Vascular diseases Oncology 6 BioClinica The use of accurate and reproducible imaging parameters as safety and efficacy
    [Show full text]
  • Hello, World! Free
    FREE HELLO, WORLD! PDF Disney Book Group | 14 pages | 16 Aug 2011 | Disney Press | 9781423141402 | English | New York, NY, United States "Hello, World!" program - Wikipedia Learn Data Science by completing interactive coding challenges and watching videos by expert instructors. Start Now! Python Hello a very simple language, and has a very straightforward syntax. It encourages programmers to program without boilerplate prepared code. The simplest directive in Python is the "print" directive - it simply prints out a line and also includes a newline, unlike in C. There Hello two major Python versions, Python 2 and Python 3. Python 2 and 3 are quite different. This tutorial uses Python 3, because it more semantically correct and supports newer features. For example, World! difference between Python 2 and 3 is the print statement. In Hello 2, World! "print" statement is not a function, and therefore it is invoked without parentheses. However, in Python World!, it World! a function, and must be invoked with parentheses. Python uses indentation for World!, instead of curly braces. Both tabs and spaces are supported, but the standard indentation requires standard Python code to use four spaces. For example:. This site is generously supported by DataCamp. Join over a million other learners and get started learning Python for data science today! Hello, World! To print a string in Python 3, just write: print "This line will be printed. Hello Tutorial. Read our Terms of Use and Privacy Policy. Hello, World! - Learn Python - Free Interactive Python Tutorial A "Hello, World! Such a Hello is very simple in most programming World!and World! often used to illustrate the basic syntax of a programming language.
    [Show full text]
  • Colour Reproduction Performance of JPEG and JPEG2000 Codecs A
    Colour Reproduction Performance of JPEG and JPEG2000 Codecs A. Punchihewa, D. G. Bailey, and R. M. Hodgson Institute of Information Sciences & Technology, Massey University, Palmerston North, New Zealand email: g.a.punchihewa, d.g.bailey, [email protected] Abstract— This paper presents a performance adjustment of analogue colour television and video comparison between a JPEG and a JPEG2000 codec systems [1]. Prior to the adoption of digital codecs, with respect to colour reproduction. The three image colour television systems used NTSC, SECAM and quality metrics used are based on the colour PAL analogue codecs to encode and decode colour components of the analogue television colour space; signals. When analogue video signals are processed, hue, saturation and luminance. As they are human distortions are introduced that depend on the codec perception based, the three objective quality metrics used. Analogue colour television information is are expected to have better correlation to a subjective transformed into the hue-saturation-intensity colour space [2]. The intensity component is a monochrome assessment. The degree of colour error or bleeding due signal compatible with earlier monochrome television to image compression is evaluated with a special systems and is also known as luminance. In PAL and colour test image, the ‘Beehive’ designed to emphasise NTSC, the chrominance components (hue and colour artefacts. The Beehive colour test image saturation) are used to modulate a higher frequency enables the performance at a wide range of sub-carrier and placed towards the high frequency compression ratios to be evaluated. The known components of the monochrome baseband at an odd reference approach, which is used in this research, multiple of half line frequency.
    [Show full text]
  • Download Article (PDF)
    Advances in Intelligent Systems Research, volume 156 7th International Conference on Management, Education and Information (MEICI 2017) Lossless Compression Algorithm For Color Image Based on the SHIRCT Xinwen Bi1, a , Meng Xu1, b *, Wenyou Hu1, c and Xiaodan Shi1, d 1Institute of Information Technology and Media, Beihua University, Jilin City, China [email protected],[email protected],[email protected],[email protected] Keywords: Robust Control; Legendre Polynomials; Sure border; Voltage Control Strategy Abstract. This paper studies the wavelet transform domain in low-frequency generation embedded SHIRCT transform complete color image compression algorithm. The results show that this algorithm can be very good to complete image lossless compression, by 12 color international standard test image simulation, JP2, RAR, ZIP ratio, PNG, TGA, PCX, TIF lossless compression results the average increase of: -1%, 12%, 60%, 60%, 32%, 50%, 28%. Introduction 20 years, image compression technology has made great progress, the most representative of the wavelet transform theory [1]. Wavelet transform theory can be used to decompose the image signal into many subband signals [1] with different spatial resolution, frequency characteristic and direction characteristic, and realize the simultaneous processing of low frequency and long time characteristics and high frequency short time characteristics [2] The image signal is closer to the requirements of visual perception and data compression. Based on the wavelet transform, these features are widely regarded in the image compression coding technology, and various image compression schemes based on wavelet transform [3] are presented. Among them, the SPIHT multi-level tree set splitting algorithm [4] (SPIHT: Set Partitioning In Hier-archical Trees and EZW Embedded Zerotree Wavelets can be considered to represent the highest level of current zerotree wavelet coding [5].
    [Show full text]
  • Technique for Lossless Compression of Color Images Based on Hierarchical Prediction, Inversion, and Context Adaptive Coding
    Technique for lossless compression of color images based on hierarchical prediction, inversion, and context adaptive coding Basar Koc Ziya Arnavut Dilip Sarkar Hüseyin Koçak Basar Koc, Ziya Arnavut, Dilip Sarkar, Hüseyin Koçak, “Technique for lossless compression of color images based on hierarchical prediction, inversion, and context adaptive coding,” J. Electron. Imaging 28(5), 053007 (2019), doi: 10.1117/1.JEI.28.5.053007. Journal of Electronic Imaging 28(5), 053007 (Sep∕Oct 2019) Technique for lossless compression of color images based on hierarchical prediction, inversion, and context adaptive coding Basar Koc,a Ziya Arnavut,b,* Dilip Sarkar,c and Hüseyin Koçakc aStetson University, Department of Computer Science, DeLand, Florida, United States bState University of New York at Fredonia, Department of Computer and Information Sciences, Fredonia, New York, United States cUniversity of Miami, Department of Computer Science, Coral Gables, Florida, United States Abstract. Among the variety of multimedia formats, color images play a prominent role. A technique for lossless compression of color images is introduced. The technique is composed of first transforming a red, green, and blue image into luminance and chrominance domain (YCu Cv ). Then, the luminance channel Y is compressed with a context-based, adaptive, lossless image coding technique (CALIC). After processing the chrominance channels with a hierarchical prediction technique that was introduced earlier, Burrows–Wheeler inversion coder or JPEG 2000 is used in compression of those Cu and Cv channels. It is demonstrated that, on a wide variety of images, particularly on medical images, the technique achieves substantial compression gains over other well- known compression schemes, such as CALIC, M-CALIC, Better Portable Graphics, JPEG-LS, JPEG 2000, and the previously proposed hierarchical prediction and context-adaptive coding technique LCIC.
    [Show full text]
  • Pyramid Coding for Image and Video Compression
    PYRAMID CODING FOR IMAGE AND VIDEO COMPRESSION David Ian Houlding B.Sc. (Electronic Engineering) University of Natal, Durban, Natal, South Africa, 1992 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTEROF APPLIEDSCIENCE in the School of Engineering Science @ David Ian Houlding 1994 SIMON FRASER UNIVERSITY June, 1994 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. APPROVAL Name: David Ian Houlding Degree: Master of Applied Science Title of thesis : Pyramid Coding for Image and Video Compression Examining Committee: Dr. John Jones Associate Professor of Engineering Science, SFU Graduate Chair Dr. Jacques Vaisey Assistant Professor of Engineering Science, SFU Senior Supervisor Dr. Vladimir Cuperman Professor of Engineering Science, SFU Supervisw Dr. Brian Funt Professor of Computing Science, SFU Examiner Date Approved: PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.
    [Show full text]