Hello, World! Free

Total Page:16

File Type:pdf, Size:1020Kb

Hello, World! Free FREE HELLO, WORLD! PDF Disney Book Group | 14 pages | 16 Aug 2011 | Disney Press | 9781423141402 | English | New York, NY, United States "Hello, World!" program - Wikipedia Learn Data Science by completing interactive coding challenges and watching videos by expert instructors. Start Now! Python Hello a very simple language, and has a very straightforward syntax. It encourages programmers to program without boilerplate prepared code. The simplest directive in Python is the "print" directive - it simply prints out a line and also includes a newline, unlike in C. There Hello two major Python versions, Python 2 and Python 3. Python 2 and 3 are quite different. This tutorial uses Python 3, because it more semantically correct and supports newer features. For example, World! difference between Python 2 and 3 is the print statement. In Hello 2, World! "print" statement is not a function, and therefore it is invoked without parentheses. However, in Python World!, it World! a function, and must be invoked with parentheses. Python uses indentation for World!, instead of curly braces. Both tabs and spaces are supported, but the standard indentation requires standard Python code to use four spaces. For example:. This site is generously supported by DataCamp. Join over a million other learners and get started learning Python for data science today! Hello, World! To print a string in Python 3, just write: print "This line will be printed. Hello Tutorial. Read our Terms of Use and Privacy Policy. Hello, World! - Learn Python - Free Interactive Python Tutorial A "Hello, World! Such a Hello is very simple in most programming World!and World! often used to illustrate the basic syntax of a programming language. It is Hello the first program written by people learning to code. While small Hello programs have existed since World! development of programmable World!the tradition of World! the phrase "Hello, World! In the above World!, the main function defines where the program should start Hello. The function body consists of a single statementa call to the printf function, which World! for " print f ormatted". This function will cause the program World! output whatever is passed to it as the parameterin this case the string hello, worldfollowed by a newline character. The C language version was preceded by Kernighan's own A Tutorial Introduction to the World! B[5] where the first Hello version of the World! is found in an example used to illustrate external variables:. The program also prints hello, world! The previous example World! the tutorial printed hi! The Jargon File claims that "Hello, World! In some languages, particularly scripting languagesthe "Hello, World! For example, in Pythonto print the string Hello, World! World!, programming languages that give the programmer more control over the machine will result in more complex "Hello, World" programs. The phrase "Hello World! Some devices limit the format to specific variations, such as all-capitalized versions on systems that support only capital letters, while some esoteric programming languages may have to print a slightly modified string. Some languages change the functionality Hello the "Hello, World! Functional programming languages, such as LispML and Haskelltend to substitute a factorial program for "Hello, World! Languages otherwise capable of World! "Hello, World! It serves as a sanity check and a simple example of installing a software package. For developers, it provides an example of creating a. Variations of the "Hello, World! Sun demonstrated a "Hello, World! This is one measure of a programming language's ease-of-use; since the program is meant as an introduction for people unfamiliar with the language, a more Hello "Hello, World! From Wikipedia, the free encyclopedia. For other uses, see Hello World disambiguation. Traditional beginners' computer program. Computer programming portal. The C Programming Language 1st ed. Bell Labs. Retrieved 9 World! Packt Publishing Ltd. Retrieved 4 December Retrieved World! October Retrieved July 26, Retrieved 19 May The Linux Documentation World!. Realtime World! AB. Archived World! the original on 21 May GNU Project. Archived from the original on 29 May World! 7 July Sun Developer Network. Grenouille Bouillie. Archived from the original PDF on Retrieved Google Books. O'Reilly World!. Retrieved 19 February Pangram World! implementation Sanity World! Standard test image. Chinese room Turing test. Calgary corpus Canterbury corpus. Cornell box Stanford bunny Stanford dragon Utah teapot. Hamburgevons Lorem ipsum The quick brown World! jumps over the lazy dog. Categories : Test items in computer languages Computer programming World!. Hidden categories: Webarchive template wayback links Articles with short description Short description is different from Wikidata Commons category link is on Wikidata Articles with example code. Namespaces Hello Talk. Views Hello Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable version. Wikimedia Commons. Wikimedia Commons has media related to Hello World. The Wikibook Computer Programming has a page on the topic of: Hello world. Hello World! - GNU Project - Free Software Foundation (FSF) Win the hearts and minds of consumers by gamifying your digital tactics, and gather the information that will help you get to know them better. Our research confirms that people want to be World! for interacting Hello brands. Reward them for watching product videos, answering a poll, sharing content socially, and more -- World! take your relationship to the next level. Create moments that drive a deep sense of attachment World! your brand, and make your marketing more meaningful. Together we are World! true industry leader in people-based marketing. What We Do. Short-term Interactions Win the hearts and minds of consumers by gamifying your digital tactics, and gather the information that will help you get to know them better. Extended Engagement Our research confirms World! people want to be recognized for interacting with brands. How digital activations can drive consumer engagement and eCommerce efforts leading up to World! holidays and Hello the new year. Must-Dos for Re-Emergence Whitepaper. Research-backed strategies to prioritize now that will World! you stay connected with your customers throughout re-emergence. Royal Caribbean International. Engagement Hub to Reward Exploration. Case Study. Anheuser-Busch InBev. World! Marketing Promotions House. But wait!.
Recommended publications
  • A General Scheme for Dithering Multidimensional Signals, and a Visual Instance of Encoding Images with Limited Palettes
    Journal of King Saud University – Computer and Information Sciences (2014) 26, 202–217 King Saud University Journal of King Saud University – Computer and Information Sciences www.ksu.edu.sa www.sciencedirect.com A General scheme for dithering multidimensional signals, and a visual instance of encoding images with limited palettes Mohamed Attia a,b,c,*,1,2, Waleed Nazih d,3, Mohamed Al-Badrashiny e,4, Hamed Elsimary d,3 a The Engineering Company for the Development of Computer Systems, RDI, Giza, Egypt b Luxor Technology Inc., Oakville, Ontario L6L6V2, Canada c Arab Academy for Science & Technology (AAST), Heliopolis Campus, Cairo, Egypt d College of Computer Engineering and Sciences, Salman bin Abdulaziz University, AlKharj, Saudi Arabia e King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia Received 12 March 2013; revised 30 August 2013; accepted 5 December 2013 Available online 12 December 2013 KEYWORDS Abstract The core contribution of this paper is to introduce a general neat scheme based on soft Digital signal processing; vector clustering for the dithering of multidimensional signals that works in any space of arbitrary Digital image processing; dimensionality, on arbitrary number and distribution of quantization centroids, and with a comput- Dithering; able and controllable quantization noise. Dithering upon the digitization of one-dimensional and Multidimensional signals; multi-dimensional signals disperses the quantization noise over the frequency domain which renders Quantization noise; it less perceptible by signal processing systems including the human cognitive ones, so it has a very Soft vector clustering beneficial impact on vital domains such as communications, control, machine-learning, etc.
    [Show full text]
  • Neural Scene Graph Rendering
    Neural Scene Graph Rendering JONATHAN GRANSKOG, NVIDIA TILL N. SCHNABEL, NVIDIA FABRICE ROUSSELLE, NVIDIA JAN NOVÁK, NVIDIA We present a neural scene graph—a modular and controllable representa- · translation Tg,1 (root node) tion of scenes with elements that are learned from data. We focus on the forward rendering problem, where the scene graph is provided by the user and references learned elements. The elements correspond to geometry and material definitions of scene objects and constitute the leaves of thegraph; we store them as high-dimensional vectors. The position and appearance of encoded scene objects can be adjusted in an artist-friendly manner via familiar trans- transformations 3 × 3 formations, e.g. translation, bending, or color hue shift, which are stored in 1 dgg x dgg 2 Tg,21: matrixmatrix Tg,2 4 the inner nodes of the graph. In order to apply a (non-linear) transforma- Tm,1 translation diuse hue tion to a learned vector, we adopt the concept of linearizing a problem by color lifting it into higher dimensions: we first encode the transformation into a shift T1 3g × 3g T1 3m × 3m T2 T3 T3 T4 high-dimensional matrix and then apply it by standard matrix-vector mul- g,3 : matrix m,2 : matrix g,3 g,2 m,1 g,2 tiplication. The transformations are encoded using neural networks. We deformation rotation scaling render the scene graph using a streaming neural renderer, which can handle graphs with a varying number of objects, and thereby facilitates scalability. Our results demonstrate a precise control over the learned object repre- g1 : m1: g2 m2 m3 g4 m4 sentations in a number of animated 2D and 3D scenes.
    [Show full text]
  • VM Dissertation 2009
    WAVELET BASED IMAGE COMPRESSION INTEGRATING ERROR PROTECTION via ARITHMETIC CODING with FORBIDDEN SYMBOL and MAP METRIC SEQUENTIAL DECODING with ARQ RETRANSMISSION By Veruschia Mahomed BSc. (Electronic Engineering) Submitted in fulfilment of the requirements for the Degree of Master of Science in Electronic Engineering in the School of Electrical, Electronic and Computer Engineering at the University of KwaZulu-Natal, Durban December 2009 Preface The research described in this dissertation was performed at the University of KwaZulu-Natal (Howard College Campus), Durban, over the period July 2005 until January 2007 as a full time dissertation and February 2007 until July 2009 as a part time dissertation by Miss. Veruschia Mahomed under the supervision of Professor Stanley Mneney. This work has been generously sponsored by Armscor and Morwadi. I hereby declare that all the material incorporated in this dissertation is my own original unaided work except where specific acknowledgment is made by name or in the form of a reference. The work contained herein has not been submitted in whole or part for a degree at any other university. Signed : ________________________ Name : Miss. Veruschia Mahomed Date : 30 December 2009 As the candidate’s supervisor I have approved this thesis for submission. Signed : ________________________ Name : Prof. S.H. Mneney Date : ii Acknowledgements First and foremost, I wish to thank my supervisor, Professor Stanley Mneney, for his supervision, encouragement and deep insight during the course of this research and for allowing me to pursue a dissertation in a field of research that I most enjoy. His comments throughout were invaluable, constructive and insightful and his willingness to set aside his time to assist me is most appreciated.
    [Show full text]
  • Lecture 2 3D Modeling
    Lecture 2 3D Modeling Dr. Shuang LIANG School of Software Engineering Tongji University Fall 2012 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Lecturer Dr. Shuang LIANG • Assisstant professor, SSE, Tongji – Education » B.Sc in Computer Science, Zhejiang University, 1999-2003 » PhD in Computer Science, Nanjing Univerisity, 2003-2008 » Visit in Utrecht University, 2007, 2008 – Research Fellowship » The Chinese University of Hong Kong, 2009 » The Hong Kong Polytechnic University, 2010-2011 » The City University of Hong Kong, 2012 • Contact – Office: Room 442, JiShi Building, JiaDing Campus, TongJi (Temporary) – Email: [email protected] 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Outline • What is a 3D model? • Usage of 3D models • Classic models in computer graphics • 3D model representations • Raw data • Solids • Surfaces 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 Outline • What is a 3D model? • Usage of 3D models • Classic models in computer graphics • 3D model representations • Raw data • Solids • Surfaces 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 What is a 3D model? 3D object using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. It is a collection of data (points and other information) 3D Modeling, Advanced Computer Graphics Shuang LIANG, SSE, Fall 2012 What is a 3D modeling? The process of developing a mathematical representation of any three-dimensional
    [Show full text]
  • Matching 3D Models with Shape Distributions
    Matching 3D Models with Shape Distributions Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin Princeton University Abstract Cad models is a simple example), the vast majority of 3D objects available via the World Wide Web will not have them, and there Measuring the similarity between 3D shapes is a fundamental prob- are few standards regarding their use. In general, 3D models will lem, with applications in computer vision, molecular biology, com- be acquired with scanning devices, or output from geometric ma- puter graphics, and a variety of other fields. A challenging aspect nipulation tools (file format conversion programs), and thus they of this problem is to find a suitable shape signature that can be con- will have only geometric and appearance information, usually com- structed and compared quickly, while still discriminating between pletely void of structure or semantic information. Automatic shape- similar and dissimilar shapes. based matching algorithms will be useful for recognition, retrieval, In this paper, we propose and analyze a method for computing clustering, and classification of 3D models in such databases. shape signatures for arbitrary (possibly degenerate) 3D polygonal Databases of 3D models have several new and interesting charac- models. The key idea is to represent the signature of an object as a teristics that significantly affect shape-based matching algorithms. shape distribution sampled from a shape function measuring global Unlike images and range scans, 3D models do not depend on the geometric properties of an object. The primary motivation for this configuration of cameras, light sources, or surrounding objects approach is to reduce the shape matching problem to the compar- (e.g., mirrors).
    [Show full text]
  • Plenoptic Imaging and Vision Using Angle Sensitive Pixels
    PLENOPTIC IMAGING AND VISION USING ANGLE SENSITIVE PIXELS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Suren Jayasuriya January 2017 c 2017 Suren Jayasuriya ALL RIGHTS RESERVED This document is in the public domain. PLENOPTIC IMAGING AND VISION USING ANGLE SENSITIVE PIXELS Suren Jayasuriya, Ph.D. Cornell University 2017 Computational cameras with sensor hardware co-designed with computer vision and graph- ics algorithms are an exciting recent trend in visual computing. In particular, most of these new cameras capture the plenoptic function of light, a multidimensional function of ra- diance for light rays in a scene. Such plenoptic information can be used for a variety of tasks including depth estimation, novel view synthesis, and inferring physical properties of a scene that the light interacts with. In this thesis, we present multimodal plenoptic imaging, the simultaenous capture of multiple plenoptic dimensions, using Angle Sensitive Pixels (ASP), custom CMOS image sensors with embedded per-pixel diffraction gratings. We extend ASP models for plenoptic image capture, and showcase several computer vision and computational imaging applica- tions. First, we show how high resolution 4D light fields can be recovered from ASP images, using both a dictionary-based machine learning method as well as deep learning. We then extend ASP imaging to include the effects of polarization, and use this new information to image stress-induced birefringence and remove specular highlights from light field depth mapping. We explore the potential for ASPs performing time-of-flight imaging, and in- troduce the depth field, a combined representation of time-of-flight depth with plenoptic spatio-angular coordinates, which is used for applications in robust depth estimation.
    [Show full text]
  • Geodesic Image and Video Editing
    Geodesic Image and Video Editing ANTONIO CRIMINISI and, TOBY SHARP and, CARSTEN ROTHER Microsoft Research Ltd, CB3 0FB, Cambridge, UK and PATRICK PEREZ´ Technicolor Research and Innovation, F-35576 Cesson-Sevign´ e,´ France This paper presents a new, unified technique to perform general edge- 1. INTRODUCTION AND LITERATURE SURVEY sensitive editing operations on n-dimensional images and videos efficiently. The first contribution of the paper is the introduction of a generalized Recent years have seen an explosion of research in Computational geodesic distance transform (GGDT), based on soft masks. This provides a Photography, with many exciting new techniques been invented to unified framework to address several, edge-aware editing operations. Di- aid users accomplish difficult image and video editing tasks effec- verse tasks such as de-noising and non-photorealistic rendering, are all tively. Much attention has been focused on: segmentation [Boykov dealt with fundamentally the same, fast algorithm. Second, a new, geodesic, and Jolly 2001; Bai and Sapiro 2007; Grady and Sinop 2008; Li symmetric filter (GSF) is presented which imposes contrast-sensitive spa- et al. 2004; Rother et al. 2004; Sinop and Grady 2007; Wang et al. tial smoothness into segmentation and segmentation-based editing tasks 2005], bilateral filtering [Chen et al. 2007; Tomasi and Manduchi (cutout, object highlighting, colorization, panorama stitching). The effect 1998; Weiss 2006] and anisotropic diffusion [Perona and Malik of the filter is controlled by two intuitive, geometric parameters. In contrast 1990], non-photorealistic rendering [Bousseau et al. 2007; Wang to existing techniques, the GSF filter is applied to real-valued pixel likeli- et al.
    [Show full text]
  • CUDA-Based Global Illumination Aaron Jensen San Jose State
    Running head: CUDA-BASED GLOBAL ILLUMINATION 1 CUDA-Based Global Illumination Aaron Jensen San Jose State University 13 May, 2014 CS 180H: Independent Research for Department Honors Author Note Aaron Jensen, Undergraduate, Department of Computer Science, San Jose State University. Research was conducted under the guidance of Dr. Pollett, Department of Computer Science, San Jose State University. CUDA-BASED GLOBAL ILLUMINATION 2 Abstract This paper summarizes a semester of individual research on NVIDIA CUDA programming and global illumination. What started out as an attempt to update a CPU-based radiosity engine from a previous graphics class evolved into an exploration of other lighting techniques and models (collectively known as global illumination) and other graphics-based languages (OpenCL and GLSL). After several attempts and roadblocks, the final software project is a CUDA-based port of David Bucciarelli's SmallPt GPU, which itself is an OpenCL-based port of Kevin Beason's smallpt. The paper concludes with potential additions and alterations to the project. CUDA-BASED GLOBAL ILLUMINATION 3 CUDA-Based Global Illumination Accurately representing lighting in computer graphics has been a topic that spans many fields and applications: mock-ups for architecture, environments in video games and computer generated images in movies to name a few (Dutré). One of the biggest issues with performing lighting calculations is that they typically take an enormous amount of time and resources to calculate accurately (Teoh). There have been many advances in lighting algorithms to reduce the time spent in calculations. One common approach is to approximate a solution rather than perform an exhaustive calculation of a true solution.
    [Show full text]
  • Data Sanity Check for Deep Learning Systems Via Learnt Assertions
    Data Sanity Check for Deep Learning Systems via Learnt Assertions Haochuan Lu∗y, Huanlin Xu∗y, Nana Liu∗y, Yangfan Zhou∗y, Xin Wang∗y ∗School of Computer Science, Fudan University, Shanghai, China yShanghai Key Laboratory of Intelligent Information Processing, Shanghai, China Abstract—Reliability is a critical consideration to DL- based deviations in a data flow perspective. Invalid input cases are systems. But the statistical nature of DL makes it quite vulnerable thus identified effectively. to invalid inputs, i.e., those cases that are not considered in We summarize the contributions of this paper as follows. the training phase of a DL model. This paper proposes to perform data sanity check to identify invalid inputs, so as to • We approach reliability enhancement of DL systems via enhance the reliability of DL-based systems. We design and data sanity check. We proposed a tool, namely SaneDL, implement a tool to detect behavior deviation of a DL model to perform data sanity check for DL-based systems. when processing an input case. This tool extracts the data flow SaneDL provides assertion mechanism to detect behavior footprints and conducts an assertion-based validation mechanism. The assertions are built automatically, which are specifically- deviation of DL model. To our knowledge, SaneDL is the tailored for DL model data flow analysis. Our experiments first assertion-based tool that can automatically detects conducted with real-world scenarios demonstrate that such an invalid input cases for DL systems. Our work can shed assertion-based data sanity check mechanism is effective in light to other practices in improving DL reliability.
    [Show full text]
  • Vol. 3 Issue 4 July 1998
    Vol.Vol. 33 IssueIssue 44 July 1998 Adult Animation Late Nite With and Comics Space Ghost Anime Porn NYC: Underground Girl Comix Yellow Submarine Turns 30 Frank & Ollie on Pinocchio Reviews: Mulan, Bob & Margaret, Annecy, E3 TABLE OF CONTENTS JULY 1998 VOL.3 NO.4 4 Editor’s Notebook Is it all that upsetting? 5 Letters: [email protected] Dig This! SIGGRAPH is coming with a host of eye-opening films. Here’s a sneak peak. 6 ADULT ANIMATION Late Nite With Space Ghost 10 Who is behind this spandex-clad leader of late night? Heather Kenyon investigates with help from Car- toon Network’s Michael Lazzo, Senior Vice President, Programming and Production. The Beatles’Yellow Submarine Turns 30: John Coates and Norman Kauffman Look Back 15 On the 30th anniversary of The Beatles’ Yellow Submarine, Karl Cohen speaks with the two key TVC pro- duction figures behind the film. The Creators of The Beatles’Yellow Submarine.Where Are They Now? 21 Yellow Submarine was the start of a new era of animation. Robert R. Hieronimus, Ph.D. tells us where some of the creative staff went after they left Pepperland. The Mainstream Business of Adult Animation 25 Sean Maclennan Murch explains why animated shows targeted toward adults are becoming a more popular approach for some networks. The Anime “Porn” Market 1998 The misunderstood world of anime “porn” in the U.S. market is explored by anime expert Fred Patten. Animation Land:Adults Unwelcome 28 Cedric Littardi relates his experiences as he prepares to stand trial in France for his involvement with Ani- meLand, a magazine focused on animation for adults.
    [Show full text]
  • A Practical Analytic Model for the Radiosity of Translucent Scenes
    A Practical Analytic Model for the Radiosity of Translucent Scenes Yu Sheng∗1, Yulong Shi2, Lili Wang2, and Srinivasa G. Narasimhan1 1The Robotics Institute, Carnegie Mellon University 2State Key Laboratory of Virtual Reality Technology and Systems, Beihang University a) b) c) Figure 1: Inter-reflection and subsurface scattering are closely intertwined for scenes with translucent objects. The main contribution of this work is an analytic model of combining diffuse inter-reflection and subsurface scattering (see Figure2). One bounce of specularities are added in a separate pass. a) Two translucent horses (63k polygons) illuminated by a point light source. The three zoomed-in regions show that our method can capture both global illumination effects. b) The missing light transport component if only subsurface scattering is simulated. c) The same mesh rendered with a different lighting and viewing position. Our model supports interactive rendering of moving camera, scene relighting, and changing translucencies. Abstract 1 Introduction Light propagation in scenes with translucent objects is hard to Accurate rendering of translucent materials such as leaves, flowers, model efficiently for interactive applications. The inter-reflections marble, wax, and skin can greatly enhance realism. The interac- between objects and their environments and the subsurface scatter- tions of light within translucent objects and in between the objects ing through the materials intertwine to produce visual effects like and their environments produce pleasing visual effects like color color bleeding, light glows and soft shading. Monte-Carlo based bleeding (Figure1), light glows and soft shading. The two main approaches have demonstrated impressive results but are computa- mechanisms of light transport — (a) scattering beneath the surface tionally expensive, and faster approaches model either only inter- of the materials and (b) inter-reflection between surface locations reflections or only subsurface scattering.
    [Show full text]
  • Backward Coding of Wavelet Trees with Fine-Grained Bitrate Control
    JOURNAL OF COMPUTERS, VOL. 1, NO. 4, JULY 2006 1 Backward Coding of Wavelet Trees with Fine-grained Bitrate Control Jiangling Guo School of Information Science and Technology, Beijing Institute of Technology at Zhuhai, Zhuhai, P.R. China Email: [email protected] Sunanda Mitra, Brian Nutter and Tanja Karp Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, USA Email: {sunanda.mitra, brian.nutter, tanja.karp}@ttu.edu Abstract—Backward Coding of Wavelet Trees (BCWT) is Recently, several new wavelet-tree-based codecs have an extremely fast wavelet-tree-based image coding algo- been developed, such as LTW [7] and Progres [8], which rithm. Utilizing a unique backward coding algorithm, drastically improved the computational efficiency in BCWT also provides a rich set of features such as resolu- terms of coding speed. In [9] we have presented our tion-scalability, extremely low memory usage, and extremely newly developed BCWT codec, which is the fastest low complexity. However, BCWT in its original form inher- its one drawback also existing in most non-bitplane codecs, wavelet-tree-based codec we have studied to date with namely coarse bitrate control. In this paper, two solutions the same compression performance as SPIHT. With its for improving the bitrate controllability of BCWT are pre- unique backward coding, the wavelet coefficients from sented. The first solution is based on dual minimum quanti- high frequency subbands to low frequency subbands, zation levels, allowing BCWT to achieve fine-grained bi- BCWT also provides a rich set of features such as low trates with quality-index as a controlling parameter; the memory usage, low complexity and resolution scalability, second solution is based on both dual minimum quantiza- usually lacking in other wavelet-tree-based codecs.
    [Show full text]