On rotational invariance of lattice Boltzmann schemes Adeline Augier, François Dubois, Benjamin Graille, Pierre Lallemand To cite this version: Adeline Augier, François Dubois, Benjamin Graille, Pierre Lallemand. On rotational invariance of lattice Boltzmann schemes. 2013. hal-00923240 HAL Id: hal-00923240 https://hal.archives-ouvertes.fr/hal-00923240 Submitted on 2 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On rotational invariance of lattice Boltzmann schemes Adeline Augier1, François Dubois1,2∗, Benjamin Graille1, Pierre Lallemand3 1 Department of Mathematics, University Paris Sud, Orsay, France. 2 Conservatoire National des Arts et Métiers, Paris, France, Structural Mechanics and Coupled Systems Laboratory. 3 Beiging Science Computing Research Center, China. ∗ corresponding author:
[email protected] . 30 June 2013 ∗ Abstract We propose the derivation of acoustic-type isotropic partial differential equations that are equivalent to linear lattice Boltzmann schemes with a density scalar field and a momentum vector field as conserved moments. The corresponding linear equivalent partial differential equations are generated with a new “Berliner version” of the Taylor expansion method. The details of the implementation are presented. These ideas are applied for the D2Q9, D2Q13, D3Q19 and D3Q27 lattice Boltzmann schemes.