Invariance Defines Scaling Relations and Probability Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Invariance Defines Scaling Relations and Probability Patterns Common probability patterns arise from simple invariances Steven A. Frank1 Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697{2525 USA Shift and stretch invariance lead to the exponential-Boltzmann probability distribution. Rotational invari- ance generates the Gaussian distribution. Particular scaling relations transform the canonical exponential and Gaussian patterns into the variety of commonly observed patterns. The scaling relations themselves arise from the fundamental invariances of shift, stretch, and rotation, plus a few additional invariances. Prior work described the three fundamental invariances as a consequence of the equilibrium canonical ensemble of statis- tical mechanics or the Jaynesian maximization of information entropy. By contrast, I emphasize the primacy and sufficiency of invariance alone to explain the commonly observed patterns. Primary invariance naturally creates the array of commonly observed scaling relations and associated probability patterns, whereas the classical approaches derived from statistical mechanics or information theory require special assumptions to derive commonly observed scales. 1. Introduction 2 9.1. Statistical mechanics 10 9.2. Jaynesian maximum entropy 10 2. Background 3 9.3. Conclusion 11 2.1. Probability increments 3 2.2. Parametric scaling relations 3 10. References 11 3. Shift invariance and the exponential form 3 Appendix A: Technical issues and extensions 12 3.1. Conserved total probability 3 1. Conserved total probability 12 3.2. Shift-invariant canonical coordinates 4 2. Conserved average values: eqn 7 12 3.3. Entropy as a consequence of shift invariance 4 3. Primacy of invariance 12 3.4. Example: the gamma distribution 4 4. Measurement theory 13 4. Stretch invariance and average values 5 Appendix B: Invariance and the common 4.1. Conserved average values 5 canonical scales 13 4.2. Alternative measures 5 5. Rotational invariance of the base scale 13 4.3. Example: the gamma distribution 5 6. General form of base scale invariance 13 7. Example: linear-log invariance of the base scale 14 5. Consequences of shift and stretch invariance 5 8. The family of canonical scales 14 5.1. Relation between alternative measures 5 9. Example: extreme values 15 5.2. Entropy 5 10. Example: stretched exponential and L´evy 15 5.3. Cumulative measure 6 5.4. Affine invariance and the common scales 6 6. Rotational invariance and the Gaussian radial measure 6 6.1. Gaussian distribution 7 6.2. Radial shift and stretch invariance 7 6.3. Transforming distributions to canonical Gaussian form 7 arXiv:1602.03559v2 [math.PR] 1 Apr 2016 6.4. Example: the gamma distribution 7 6.5. Example: the beta distribution 8 7. Rotational invariance and partitions 8 7.1. Overview 8 7.2. Rotational invariance of conserved probability 8 7.3. Partition of the canonical scale 9 7.4. Partition into location and rate 9 8. Summary of invariances 9 9. The primacy of invariance and symmetry 10 a)web: http://stevefrank.org git • master @ arXiv2-0-e7d119f-2016-04-01 (2016-04-05 00:57Z) • safrank 2 It is increasingly clear that the symmetry [invari- What is primary in the relation between these two ance] group of nature is the deepest thing that we equations: equilibrium statistical mechanics or shift in- understand about nature today. I would like to variance? The perspective of statistical mechanics, with suggest something here that I am not really cer- eqn 2 as the primary equilibrium outcome, dominates treatises of physics. tain about but which is at least a possibility: that Jaynes4,5 questioned whether statistical mechanics is specifying the symmetry group of nature may be sufficient to explain why patterns of nature often follow all we need to say about the physical world, be- the form of eqn 2. Jaynes emphasized that the same yond the principles of quantum mechanics. probability pattern often arises in situations for which The paradigm for symmetries of nature is of physical theories of particle dynamics make little sense. In Jaynes' view, if most patterns in economics, biology, course the group symmetries of space and time. and other disciplines follow the same distributional form, These are symmetries that tell you that the laws then that form must arise from principles that transcend of nature don't care about how you orient your the original physical interpretations of particles, energy, laboratory, or where you locate your laboratory, and statistical mechanics6. or how you set your clocks or how fast your lab- Jaynes argued that probability patterns derive from oratory is moving (Weinberg 1, p. 73). the inevitable tendency for systems to lose information. By that view, the equilibrium form expresses minimum information, or maximum entropy, subject to whatever For the description of processes taking place in constraints may act in particular situations. In maximum nature, one must have a system of reference (Lan- entropy, the shift invariance of the equilibrium distribu- dau and Lifshitz 2, p. 1). tion is a consequence of the maximum loss of information under the constraint that total probability is conserved. Here, I take the view that shift invariance is pri- 1 INTRODUCTION mary. My argument is that shift invariance and the conservation of total probability lead to the exponential- I argue that three simple invariances dominate much of Boltzmann form of probability distributions, without the observed pattern. First, probability patterns arise from need to invoke Boltzmann's equilibrium statistical me- invariance to a shift in scaled measurements. Second, chanics or Jaynes' maximization of entropy. Those sec- the scaling of measurements satisfies invariance to uni- ondary special cases of Boltzmann and Jaynes follow from form stretch. Third, commonly observed scales are often primary shift invariance and the conservation of proba- invariant to rotation. bility. The first part of this article develops the primacy Feynman3 described the shift invariant form of proba- of shift invariance. bility patterns as Once one adopts the primacy of shift invariance, one is faced with the interpretation of the measurement scale, q (E) q (E + a) E. We must abandon energy, because we have discarded = ; (1) q E0 q E0 + a the primacy of statistical mechanics, and we must aban- don Jaynes' information, because we have assumed that in which q (E) is the probability associated with a mea- we have only general invariances as our basis. surement, E. Here, the ratio of probabilities for two dif- We can of course end up with notions of energy and ferent measurements, E and E0, is invariant to a shift by information that derive from underlying invariance. But a. Feynman derived this invariant ratio as a consequence that leaves open the problem of how to define the canon- of Boltzmann's equilibrium distribution of energy levels, ical scale, E, that sets the frame of reference for measure- E, that follows from statistical mechanics ment. We must replace the scaling relation E in the above q (E) = λe−λE : (2) equations by something that derives from deeper gener- ality: the invariances that define the commonly observed Here, λ = 1= hEi is the inverse of the average measure- scaling relations. ment. In essence, we start with an underlying scale for obser- Feynman presented the second equation as primary, vation, z. We then ask what transformed scale, z 7! Tz ≡ arising as the equilibrium from the underlying dynamics E, achieves the requisite shift invariance of probability of particles and the consequent distribution of energy, E. pattern, arising from the invariance of total probability. He then mentioned in a footnote that the first equation It must be that shift transformations, Tz 7! a+Tz, leave of shift invariance follows as a property of equilibrium. the probability pattern invariant, apart from a constant However, one could take the first equation of shift invari- of proportionality. ance as primary. The second equation for the form of the Next, we note that a stretch of the scale, Tz 7! bTz, probability distribution then follows as a consequence of also leaves the probability pattern unchanged, because shift invariance. the inverse of the average value in eqn 2 becomes λ = git • master @ arXiv2-0-e7d119f-2016-04-01 (2016-04-05 00:57Z) • safrank 3 1=b hTzi, which cancels the stretch in the term λE = λTz. 2.2 Parametric scaling relations Thus, the scale Tz has the property that the associated probability pattern is invariant to the affine transforma- A probability pattern, qzd z, may be considered as a tion of shift and stretch, T 7! a + bT . That affine z z parametric description of two scaling relations, qz and z, invariance generates the symmetry group of scaling rela- with respect to the parameter z. Geometrically, qzd z tions that determine the commonly observed probability is a rectangular area defined by the parametric height, patterns7{9. qz, with respect to the parameter, z, and the parametric The final part of this article develops rotational in- width, d z, with respect to the parameter, z. variance of conserved partitions. For example, the We may think of z as a parameter that defines a curve Pythagorean partition T = x2(s)+y2(s) splits the scaled z along the path ( z; qz), relating a scaled input measure, measurement into components that add invariantly to T z z, to a scaled output probability, qz. The followings sec- for any value of s. The invariant quantity definesp a circle tions describe how different invariances constrain these in the xy plane with a conserved radius Rz = Tz that scaling relations. is invariant to rotation around the circle, circumscribing 2 a conserved area πRz = πTz. Rotational invariance al- lows one to partition a conserved quantity into additive 3 SHIFT INVARIANCE AND THE EXPONENTIAL FORM components, which often provides insight into underlying process. I show that shift invariance and the conservation of If we can understand these simple shift, stretch, and ro- total probability lead to the exponential form of proba- tational invariances, we will understand much about the bility distributions in eqn 2.
Recommended publications
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Rotational Invariance in Critical Planar Lattice Models
    Rotational invariance in critical planar lattice models Hugo Duminil-Copin∗y, Karol Kajetan Kozlowski,§ Dmitry Krachun,y Ioan Manolescu,z Mendes Oulamara∗ December 25, 2020 Abstract In this paper, we prove that the large scale properties of a number of two- dimensional lattice models are rotationally invariant. More precisely, we prove that the random-cluster model on the square lattice with cluster-weight 1 ≤ q ≤ 4 ex- hibits rotational invariance at large scales. This covers the case of Bernoulli percola- tion on the square lattice as an important example. We deduce from this result that the correlations of the Potts models with q 2 f2; 3; 4g colors and of the six-vertex height function with ∆ 2 [−1; −1=2] are rotationally invariant at large scales. Contents 1 Introduction2 1.1 Motivation....................................2 1.2 Definition of the random-cluster model and distance between percolation configurations..................................3 1.3 Main results for the random-cluster model..................5 1.4 Applications to other models.........................7 2 Proof Roadmap9 2.1 Random-cluster model on isoradial rectangular graphs............9 2.2 Universality among isoradial rectangular graphs and a first version of the coupling...................................... 11 2.3 The homotopy topology and the second and third versions of the coupling. 13 2.4 Harvesting integrability on the torus..................... 16 ∗Institut des Hautes Études Scientifiques and Université Paris-Saclay yUniversité de Genève §ENS Lyon zUniversity of Fribourg 1 3 Preliminaries 19 3.1 Definition of the random-cluster model.................... 19 3.2 Elementary properties of the random-cluster model............. 20 3.3 Uniform bounds on crossing probabilities..................
    [Show full text]
  • Rotational Invariance of Two-Level Group Codes Over Dihedral and Dicyclic Groups
    Sddhangl, Vol. 23, Part 1, February 1998, pp. 45-56. © Printed in India. Rotational invariance of two-level group codes over dihedral and dicyclic groups JYOTI BALI ~ and B SUNDAR RAJAN 2 i Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India 2Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560 012, India e-mail: [email protected]; [email protected] Abstract. Phase-rotational invariance properties for two-level constructed, (using a binary code and a code over a residue class integer ring as component codes) Euclidean space codes (signal sets) in two and four dimensions are discussed. The label codes are group codes over dihedral and dicyclic groups respectively. A set of necessary and sufficient conditions on the component codes is obtained for the resulting signal sets to be rotationally invariant to several phase angles. Keywords. Multilevel codes; group codes; dihedral groups; coded modulation. 1. Introduction It is well known (Viterbi & Omura 1979; Bendetto et al 1987) that digital communication over Additive White Gaussian Noise (AWGN) channel can be modelled as transmission of a point from a finite set of points, called signal set, of a finite dimensional vector space and the Maximum Likelihood soft decoding then becomes choosing the closest point in the signal set, in the sense of Euclidean distance, from the received point in the space. The probability of error performance to a large extent is dominated by the minimum of the pairwise distances of the signal points. The problem of signal set design for AWGN channel then is choosing a specified number of points in a space of specified dimensions in such a way that the minimum distance is the maximum possible.
    [Show full text]
  • Lagrangian Mechanics
    Chapter 1 Lagrangian Mechanics Our introduction to Quantum Mechanics will be based on its correspondence to Classical Mechanics. For this purpose we will review the relevant concepts of Classical Mechanics. An important concept is that the equations of motion of Classical Mechanics can be based on a variational principle, namely, that along a path describing classical motion the action integral assumes a minimal value (Hamiltonian Principle of Least Action). 1.1 Basics of Variational Calculus The derivation of the Principle of Least Action requires the tools of the calculus of variation which we will provide now. Definition: A functional S[ ] is a map M S[]: R ; = ~q(t); ~q :[t0; t1] R R ; ~q(t) differentiable (1.1) F! F f ⊂ ! g from a space of vector-valued functions ~q(t) onto the real numbers. ~q(t) is called the trajec- tory of a systemF of M degrees of freedom described by the configurational coordinates ~q(t) = (q1(t); q2(t); : : : qM (t)). In case of N classical particles holds M = 3N, i.e., there are 3N configurational coordinates, namely, the position coordinates of the particles in any kind of coordianate system, often in the Cartesian coordinate system. It is important to note at the outset that for the description of a d classical system it will be necessary to provide information ~q(t) as well as dt ~q(t). The latter is the velocity vector of the system. Definition: A functional S[ ] is differentiable, if for any ~q(t) and δ~q(t) where 2 F 2 F d = δ~q(t); δ~q(t) ; δ~q(t) < , δ~q(t) < , t; t [t0; t1] R (1.2) F f 2 F j j jdt j 8 2 ⊂ g a functional δS[ ; ] exists with the properties · · (i) S[~q(t) + δ~q(t)] = S[~q(t)] + δS[~q(t); δ~q(t)] + O(2) (ii) δS[~q(t); δ~q(t)] is linear in δ~q(t).
    [Show full text]
  • Rotational Invariant Operators Based on Steerable Filter Banks
    Rotational Invariant Operators based on Steerable Filter Banks X. Shi A.L. Ribeiro Castro R. Manduchi R. Montgomery Apple Computer, Inc. Dept. of Mathematics Dept. of Comp. Eng. Dept. of Mathematics [email protected] UC Santa Cruz UC Santa Cruz UC Santa Cruz [email protected] [email protected] [email protected] ABSTRACT rotational invariant descriptors starting from the original N We introduce a technique for designing rotation invariant steerable filters. This requires solving a first order linear PDE. operators based on steerable filter banks. Steerable filters are A closed form solution for this case is provided in this paper. widely used in Computer Vision as local descriptors for texture II. PROBLEM STATEMENT AND SOLUTION analysis. Rotation invariance has been shown to improve A. Steerable Filters as Local Descriptors texture-based classification in certain contexts. Our approach to invariance is based on solving the PDE associated with the A mainstream approach to texture analysis is based on the formulation of invariance in a Lie group framework. representation of texture patches by low–dimensional local descriptors. A linear filter bank is normally used for this I. INTRODUCTION purpose. The vector (descriptor) formed by the outputs of Image texture analysis is normally performed by first ex- N filters at a certain pixel is a rank–N linear mapping of tracting feature vectors (descriptors), designed so as to capture the graylevel profile within a neighborhood of that pixel. The the most relevant visual information. The descriptors, and marginal or joint statistics of the descriptor are then used to the subsequent analysis algorithm, should be invariant under characterize the variability of texture appearance.
    [Show full text]
  • How Rotational Invariance of Common Kernels Prevents Generalization in High Dimensions
    How rotational invariance of common kernels prevents generalization in high dimensions Konstantin Donhauser, Mingqi Wu, and Fanny Yang Department of Computer Science, ETH Z¨urich Abstract Kernel ridge regression is well-known to achieve minimax optimal rates in low-dimensional settings. However, its behavior in high dimensions is much less understood. Recent work establishes consistency for kernel regression under certain assumptions on the ground truth function and the distribution of the input data. In this paper, we show that the rotational invariance property of commonly studied kernels (such as RBF, inner product kernels and fully-connected NTK of any depth) induces a bias towards low-degree polynomials in high dimensions. Our result implies a lower bound on the generalization error for a wide range of distributions and various choices of the scaling for kernels with different eigenvalue decays. This lower bound suggests that general consistency results for kernel ridge regression in high dimensions require a more refined analysis that depends on the structure of the kernel beyond its eigenvalue decay. 1 Introduction Traditional analysis establishes good generalization properties of kernel ridge regression when the dimension d is relatively small compared to the number of samples n. These minimax optimal and consistency results however become less powerful for modern data sets with large d close to n. High-dimensional asymptotic theory [7, 42] aims to fill this gap by providing bounds that assume d; n ! 1 and are often much more predictive of practical observations even for finite d. While recent work [2, 12, 19] establishes explicit asymptotic upper bounds for the bias and variance for high-dimensional linear regression, the results for kernel regression are less conclusive in the regime d=nβ ! c with β 2 (0; 1).
    [Show full text]
  • On Rotational Invariance of Lattice Boltzmann Schemes Adeline Augier, François Dubois, Benjamin Graille, Pierre Lallemand
    On rotational invariance of lattice Boltzmann schemes Adeline Augier, François Dubois, Benjamin Graille, Pierre Lallemand To cite this version: Adeline Augier, François Dubois, Benjamin Graille, Pierre Lallemand. On rotational invariance of lattice Boltzmann schemes. 2013. hal-00923240 HAL Id: hal-00923240 https://hal.archives-ouvertes.fr/hal-00923240 Submitted on 2 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On rotational invariance of lattice Boltzmann schemes Adeline Augier1, François Dubois1,2∗, Benjamin Graille1, Pierre Lallemand3 1 Department of Mathematics, University Paris Sud, Orsay, France. 2 Conservatoire National des Arts et Métiers, Paris, France, Structural Mechanics and Coupled Systems Laboratory. 3 Beiging Science Computing Research Center, China. ∗ corresponding author: [email protected] . 30 June 2013 ∗ Abstract We propose the derivation of acoustic-type isotropic partial differential equations that are equivalent to linear lattice Boltzmann schemes with a density scalar field and a momentum vector field as conserved moments. The corresponding linear equivalent partial differential equations are generated with a new “Berliner version” of the Taylor expansion method. The details of the implementation are presented. These ideas are applied for the D2Q9, D2Q13, D3Q19 and D3Q27 lattice Boltzmann schemes.
    [Show full text]
  • Asymmetry in Repeated Isotropic Rotations
    PHYSICAL REVIEW RESEARCH 1, 023012 (2019) Asymmetry in repeated isotropic rotations Malte Schröder and Marc Timme Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed), and Institute for Theoretical Physics, TU Dresden, 01062 Dresden, Germany and Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany (Received 2 July 2019; published 10 September 2019) Random operators constitute fundamental building blocks of models of complex systems yet are far from fully understood. Here, we explain an asymmetry emerging upon repeating identical isotropic (uniformly random) operations. Specifically, in two dimensions, repeating an isotropic rotation twice maps a given point on the two-dimensional unit sphere (the unit circle) uniformly at random to any point on the unit sphere, reflecting a statistical symmetry as expected. In contrast, in three and higher dimensions, a point is mapped more often closer to the original point than a uniform distribution predicts. Curiously, in the limit of the dimension d →∞, a symmetric distribution is approached again. We intuitively explain the emergence of this asymmetry and why it disappears in higher dimensions by disentangling isotropic rotations into a sequence of partial actions. The asymmetry emerges in two qualitatively different forms and for a wide range of general random operations relevant in complex systems modeling, including repeated continuous and discrete rotations, roto-reflections and general orthogonal transformations. DOI: 10.1103/PhysRevResearch.1.023012 I. INTRODUCTION Mathematically, rotations are described by orthogonal ma- trices Q ∈ Rd×d satisfying Q−1 = QT and det Q = 1. Each Random operations ubiquitously appear in complex system − given Q maps one orientation of the unit sphere Sd 1 in models where they often reflect a statistical or approximate d dimensions to one other orientation, and each point on symmetry of the real system [1–10].
    [Show full text]
  • Discrete Rotational Symmetry, Moment Isotropy, and Higher Order Lattice Boltzmann Models
    Discrete Rotational Symmetry, Moment Isotropy, and Higher Order Lattice Boltzmann Models Hudong Chen1, Isaac Goldhirsch1,2 and Steven A. Orszag1,3 Abstract Conventional lattice Boltzmann models only satisfy moment isotropy up to fourth order. In order to accurately describe important physical effects beyond the isothermal Navier- Stokes fluid regime, higher-order isotropy is required. In this paper, we present some basic results on moment isotropy and its relationship to the rotational symmetry of a generating discrete vector set. The analysis provides a geometric understanding for popular lattice Boltzmann models, while offering a systematic procedure to construct higher-order models. [Key words: lattice Boltzmann method; moment isotropy; discrete rotational symmetry; fluid dynamics] 1 Exa Corporation, 3 Burlington Woods Drive, Burlington, MA 01821 2 Also, School of Mechanical Engineering, Tel-Aviv University, Ramat-Aviv, ISRAEL 3 Also, Department of Mathematics, Yale University, New Haven, CT 06510 1. Introduction The Lattice Boltzmann Method (LBM) is increasingly recognized as an effective method for numerical fluid flow simulations [2, 12 18]. Besides its algorithmic simplicity, capability to be efficiently parallelizable, high numerical stability [7, 23], and effectiveness for time- dependent fluid computations, the representation of fluid flows by the LBM has a physical basis that results from its kinetic theoretical origins. Indeed, the LBM is arguably applicable to a wider variety of fluid flow phenomena than conventional macroscopic (hydrodynamic) based descriptions [1, 5, 17], as LBM may capture phenomena on mesoscopic scales. There have been extensive studies of LBM over the past last decade. However, one important aspect of LBM has not yet received sufficient notice: Because a handful of discrete velocity values are employed in LBM, the advection process in LBM can be explicitly carried out for each and every distribution at the specific velocity values that are used.
    [Show full text]
  • Translational and Rotational Invariance in Networked Dynamical Systems
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 1 Translational and Rotational Invariance in Networked Dynamical Systems Cristian-Ioan Vasile1 Student Member, IEEE, Mac Schwager2 Member, IEEE, and Calin Belta3 Senior Member, IEEE Abstract—In this paper, we study the translational and rota- multiplied by a scalar gain which depends only on the distance tional (SE(N)) invariance properties of locally interacting multi- between the states of the two agents. This result can be used agent systems. We focus on a class of networked dynamical as a test (does a given multi-agent controller require global systems, in which the agents have local pairwise interactions, and the overall effect of the interaction on each agent is the sum information?), or as a design specification (a multi-agent of the interactions with other agents. We show that such systems controller is required that uses only local information, hence are SE(N)-invariant if and only if they have a special, quasi- only quasi-linear pairwise interactions can be considered). It linear form. The SE(N)-invariance property, sometimes referred can also be used to test hypothesis about local interaction to as left invariance, is central to a large class of kinematic laws in biological (e.g., locally interacting cells) and physical and robotic systems. When satisfied, it ensures independence to global reference frames. In an alternate interpretation, it allows systems. for integration of dynamics and computation of control laws in We prove the result for agents embedded in Euclidean the agents’ own reference frames. Such a property is essential space of any dimension, and the result holds for arbitrary in a large spectrum of applications, e.g., navigation in GPS- graph topologies, including directed or undirected, switching, denied environments.
    [Show full text]
  • Continuous Symmetries and Conservation Laws. Noether's
    Nature always creates the best of all options. Aristoteles (384 BC–322 BC) 8 Continuous Symmetries and Conservation Laws. Noether’s Theorem In many physical systems, the action is invariant under some continuous set of transformations. In such systems, there exist local and global conservation laws analogous to current and charge conservation in electrodynamics. The analogs of the charges can be used to generate the symmetry transformation, from which they were derived, with the help of Poisson brackets, or after quantization, with the help of commutators. 8.1 Point Mechanics Consider a simple mechanical system with a generic action tb A = dt L(q(t), q˙(t), t). (8.1) Zta 8.1.1 Continuous Symmetries and Conservation Law Suppose A is invariant under a continuous set of transformations of the dynamical variables: q(t) → q′(t)= f(q(t), q˙(t)), (8.2) where f(q(t), q˙(t)) is some functional of q(t). Such transformations are called sym- metry transformations. Thereby it is important that the equations of motion are not used when establishing the invariance of the action under (8.2). If the action is subjected successively to two symmetry transformations, the re- sult is again a symmetry transformation. Thus, symmetry transformations form a group called the symmetry group of the system. For infinitesimal symmetry trans- formations (8.2), the difference ′ δsq(t) ≡ q (t) − q(t) (8.3) will be called a symmetry variation. It has the general form δsq(t)= ǫ∆(q(t), q˙(t), t). (8.4) 619 620 8 Continuous Symmetries and Conservation Laws.
    [Show full text]
  • Switching Quantum Reference Frames in the N-Body Problem and the Absence of Global Relational Perspectives
    Switching quantum reference frames in the N-body problem and the absence of global relational perspectives Augustin Vanrietvelde1, Philipp A. H¨ohn∗ 1,2, and Flaminia Giacomini1,2 1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria 2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria Abstract Given the importance of quantum reference systems to both quantum and gravitational physics, it is pertinent to develop a systematic method for switching between the descriptions of physics relative to different choices of quantum reference systems, which is valid in both fields. Here, we continue with such a unifying approach, begun in [1], whose key ingredients are an operational language and a gravity-inspired symmetry principle. The latter enforces physics to be relational and leads, thanks to gauge related redundancies, to a perspective-neutral structure which contains all frame choices at once and via which frame perspectives can be consistently switched. Formulated in the language of constrained systems, the perspective-neutral structure turns out to be the constraint surface classically and the gauge invariant Hilbert space in the Dirac quantized theory. By contrast, a perspective relative to a specific frame corresponds to a gauge choice and the associated reduced phase and Hilbert space. Quantum reference frame switches thereby amount to a symmetry transformation. In the quantum theory, they require a transformation that takes one from the Dirac to a reduced quantum theory and we show that it amounts to a trivialization of the constraints and a subsequent projection onto the classical gauge fixing conditions.
    [Show full text]