MAPA DE PELIGROS DEL VOLCÁN UBINAS Instituto Geológico Minero Y Metalúrgico 290000 295000 300000 305000 310000

Total Page:16

File Type:pdf, Size:1020Kb

MAPA DE PELIGROS DEL VOLCÁN UBINAS Instituto Geológico Minero Y Metalúrgico 290000 295000 300000 305000 310000 MAPA DE PELIGROS DEL VOLCÁN UBINAS Instituto Geológico Minero y Metalúrgico 290000 295000 300000 305000 310000 4 0 0 0 INTRODUCCIÓN 4 6 0 i 0 Este m ap a re p re se nta c on d istintos c olore s las zonas susc e p tib le s d e se r afe c tad as c on m ayor fre c ue nc ia p or ne n cu a 3 n 6 a s u 0 io H o 0 d ife re nte sfe nóm e nosvolc ánic osc om o c aíd a d e c e niza y p ie d ra p óm e z,flujos p iroc lástic os,flujos d e b arro (lahare s), 0 R n 0 4 a 0 4 0 0 Qd C 0 0 4 a 0 avalanc ha d e e sc om b rosy flujos d e lava. Se d istingue ntre s zonas: Alto p e ligro e n c olorrojo, m od e rad o p e ligro e n Q 80 . d . 0 C 0 a 0 . ol Q a pa 0 ue 3800 0 na d 2 pe 2 naranja y b ajo p e ligro e n am arillo. La zona c e rc ana al c ráte r (rojo), la m ás p e ligrosa, se ría afe c tad a c on m ayor Q 8 Qda. Ajane 8 fre c ue nc iap or tod os los fe nóm e nos,m ie ntras q ue la zona am arilla se ría afe c tad a p or p oc os fe nóm e nosy sólo e n Ü Qd a. 4 Ta 200 co e rup c ione sd e e xc e p c ionalm agnitud .La d e te rm inac iónd e zonas d e p e ligro e stáb asad a e n una c om b inac ióno sum a ne d e tod os los p e ligros q ue p ue d e n afe c tar d ic has áre as. METODOLOGÍA ipa era Arequ -Yal ret ag ar u C a 4600 e Para d e lim itarlas zonas d e p e ligro se tuvo e n c ue nta los e stud iosge ológic os,m od e lam ie ntosp orc om p utad orap ara laqu ca 0 ha 0 Q Q C 6 da. flujos d e b arro o lahare s, c álc ulos d e líne as d e e ne rgía, p ara d e te rm inard istanc ias hasta d ond e p ue d e n alc anzar da. 4 d Ccapul Q 0 a ia 0 0 . 0 4 T 8 4 i Q futurosflujos p iroc lástic osy avalanc hasd e e sc om b ros.Ad e m ás,e je m p losanálogos d e e rup c ione soc urrid ase n otros 4 n g d u a y o . volc ane s d e l m und o. Al p ie d e l m ap a se c itan las p rinc ip ale s re fe re nc ias q ue c ontrib uye ron e n su c onfe c c ión. c J u m i 4 r 4 400 0 a 0 0 in TIPOS DE PELIGROS VOLCÁNICOS MÁS FRECUENTES EN EL VOLCÁN UBINAS im Ch . 0 a 4 0 d 0 8 8 Q 0 00 4 0 8 0 4 0 0 0 0 8 0 0 4 5 5 CAÍDA DE CENIZA Y PIEDRA PÓMEZ 9 9 1 1 8 Rio de 8 Torata 4 8 Éstas se ge ne ran c uand o los fragm e ntosd e roc a son e xp ulsad os hac ia la atm ósfe ra viole ntam e nte ,form and o una 0 0 46 c olum nae rup tiva alta, q ue p oste riorm e ntec ae n sob re la sup e rfic ie te rre stre .Los fragm e ntosm ás grand e s y d e nsos 00 3 0 c ae n c e rc a d e lvolc án y se d e nom inanb om b as o b loq ue s (>64 m m ), m ie ntras q ue las p artíc ulasd e m e nortam añ o, 8 0 0 0 0 4 d e nom inad aslap illip óm e z(2-64 m m ) y c e niza (<2 m m ) son lle vad as p ore lvie nto a grand e s d istanc ias,lue go c ae n y 4 2 form an una c ap a d e varios m ilím e troso c e ntím e trosd e e sp e sor.Estas p artíc ulasp ue d e n c ausarp rob le m asd e salud 0 0 R i o e n las p e rsonas,c ontam inarlas fue nte sd e agua, afe c tarc ultivos,inte rrum p ire ltráfic o aé re o,e tc . La c aíd a d e c e niza VOLCÁN UBINAS P a 0 r 0 a 42 oc urre e ntre d os y se is ve c e s c ad a c ie n añ os. e u q a l Laguna Piscococha 0 a 0 Qda. Lulucani 4 m 5 A FLUJOS DE BARRO (HUAYCOS O LAHARES) . a 5 d 6 0 Q 0 800 56 4 00 o Q 52 Q y d 00 d a 0 a jo . H 0 . i u Los flujos d e b arro son m e zc las d e fragm e ntosd e roc a volc ánic a d e tam añ os d ive rsos m ovilizad osp ore lagua, q ue 50 In h a f C ta ie . m rn a pu fluye n ráp id am e nte ,c on ve loc id ad e sp rom e d ioe ntre 10 y 20 m /s. Se ge ne ran e n p e riod osd e e rup c ión o d e re p oso ill d o Q volc ánic o.Elagua p ue d e p rove nird e fue rte s lluvias o d e la fusión d e hie lo o nie ve . Estos flujos viajan a lo largo d e 0 0 0 0 0 0 q ue b rad aso ríos, y e ve ntualm e ntep ue d e n salirse d e e stos c auc e s. Eláre a afe c tad a d e p e nd e d e lvolum e n d e agua 0 0 9 9 1 1 m ate riale ssue ltos d isp onib le s,asíc om o d e la p e nd ie nte d e láre a. Norm alm e nted e struye ntod o a su p aso y p ue d e n 8 8 4 re c orre r grand e s d istanc ias (>100 km ). Los flujos d e b arro son m uy c om une s d urante e rup c ione s d e l U b inas. 600 Ri o V ol oc ca eray nm ortad ay a. C o d 4 Q 0 3800 0 0 FLUJOS PIROCLÁSTICOS Querapi ") Los flujos p iroc lástic osson m e zc lasd e c e niza,fragm e ntosd e roc a y gase s c alie nte s(300 °C a 800 °C). De sc ie nd e n p or Q R d io S los flanc os d e l volc án a ras d e la sup e rfic ie y a grand e s ve loc id ad e s, e ntre 100 y 300 m /s. Están c onstituíd os a. acu ipa Po aya u s 0 Q q Para to 0 norm alm e ntep oruna p arte infe riord e nsa, q ue se e nc auza y d e sp laza p ore lfond o d e las q ue b rad aso valle s, y otra e 6 r c d ") o 4 A n UBINAS a 0 ra e ") . 0 8 te I 3 sup e rior,m e nosd e nsad e nom inad aole ad ap iroc lástic a,c om p ue stap oruna nub e d e gase sy c e nizaq ue c on fre c ue nc ia e ñ rr Q R a n a d i C a o e sale n d e lvalle , p ud ie nd o afe c tarun áre a m ayor. Estos flujos d e struye ny c alc inan tod o lo q ue e nc ue ntrana su p aso, . 3 P 0 C 4 4 a 6 0 0 Escacha 0 h 0 0 8 r ") son p oc o fre c ue nte s e n la ac tivid ad históric a d e l U b inas y oc urre n e ntre 2000 y 500 añ os. 4 i a f l o n lo il Tonohaya b ") 3 4 m 0 a 0 T o e i n 4800 R Sacuhaya R 0 u ") i 400 c o AVALANCHA DE ESCOMBROS n U a 0 b 0 u in 0 H a 0 Las avalanc has d e e sc om b rosson d e slizam ie ntosráp id os d e lflanc o d e un volc án.
Recommended publications
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
    7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992).
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Dirección De Preparación Cepig
    DIRECCIÓN DE PREPARACIÓN CEPIG INFORME DE POBLACIÓN EXPUESTA ANTE CAÍDA DE CENIZAS Y GASES, PRODUCTO DE LA ACTIVIDAD DEL VOLCÁN UBINAS PARA ADOPTAR MEDIDAS DE PREPARACIÓN Fuente: La República ABRIL, 2015 1 INSTITUTO NACIONAL DE DEFENSA CIVIL (INDECI) CEPIG Informe de población expuesta ante caída de cenizas y gases, producto de la actividad del volcán Ubinas para adoptar medidas de preparación. Instituto Nacional de Defensa Civil. Lima: INDECI. Dirección de Preparación, 2015. Calle Dr. Ricardo Angulo Ramírez Nº 694 Urb. Corpac, San Isidro Lima-Perú, San Isidro, Lima Perú. Teléfono: (511) 2243600 Sitio web: www.indeci.gob.pe Gral. E.P (r) Oscar Iparraguirre Basauri Director de Preparación del INDECI Ing. Juber Ruiz Pahuacho Coordinador del CEPIG - INDECI Equipo Técnico CEPIG: Lic. Silvia Passuni Pineda Lic. Beneff Zuñiga Cruz Colaboradores: Pierre Ancajima Estudiante de Ing. Geológica 2 I. JUSTIFICACIÓN En el territorio nacional existen alrededor de 400 volcanes, la mayoría de ellos no presentan actividad. Los volcanes activos se encuentran hacia el sur del país en las regiones de Arequipa, Moquegua y Tacna, en parte de la zona volcánica de los Andes (ZVA), estos son: Coropuna, Valle de Andagua, Hualca Hualca, Sabancaya, Ampato, Misti en la Región Arequipa; Ubinas, Ticsani y Huaynaputina en la región Moquegua, y el Yucamani y Casiri en la región Tacna. El Volcán Ubinas es considerado el volcán más activo que tiene el Perú. Desde el año 1550, se han registrado 24 erupciones aprox. (Rivera, 2010). Estos eventos se presentan como emisiones intensas de gases y ceniza precedidos, en algunas oportunidades, de fuertes explosiones. Los registros históricos señalan que el Volcán Ubinas ha presentado un Índice máximo de Explosividad Volcánica (IEV) (Newhall & Self, 1982) de 3, considerado como moderado a grande.
    [Show full text]
  • Frozen Mummies from Andean Mountaintop Shrines: Bioarchaeology and Ethnohistory of Inca Human Sacrifice
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 439428, 12 pages http://dx.doi.org/10.1155/2015/439428 Review Article Frozen Mummies from Andean Mountaintop Shrines: Bioarchaeology and Ethnohistory of Inca Human Sacrifice Maria Constanza Ceruti Instituto de Investigaciones de Alta Montana,˜ Universidad Catolica´ de Salta, Campus Castanares,˜ 4400 Salta, Argentina Correspondence should be addressed to Maria Constanza Ceruti; [email protected] Received 22 December 2014; Accepted 5 April 2015 Academic Editor: Andreas G. Nerlich Copyright © 2015 Maria Constanza Ceruti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study will focus on frozen mummies of sacrificial victims from mounts Llullaillaco (6739 m), Quehuar (6130 m), ElToro (6160 m), and the Aconcagua massif. These finds provide bioarchaeological data from mountaintop sites that has been recovered in scientifically controlled excavations in the northwest of Argentina, which was once part of the southern province of the Inca Empire. Numerous interdisciplinary studies have been conducted on the Llullaillaco mummies, including radiological evaluations by conventional X-rays and CT scans, which provided information about condition and pathology of the bones and internal organ, as well as dental studies oriented to the estimation of the ages of the three children at the time of death. Ancient DNA studies and hair analysis were also performed in cooperation with the George Mason University, the University of Bradford, and the Laboratory of Biological Anthropology at the University of Copenhagen. Ethnohistorical sources reveal interesting aspects related to the commemorative, expiatory, propitiatory, and dedicatory aspects of human sacrifice performed under Inca rule.
    [Show full text]
  • Application of INSAR Interferometry and Geodetic Surveys for Monitoring Andean Volcanic Activity : First Results from ASAR-ENVISAT Data
    6th International Symposi um on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 115-118 Application of INSAR interferometry and geodetic surveys for monitoring Andean volcanic activity : First results from ASAR-ENVISAT data S. Bonvalot (1,2,4), J.-L. Froger (1,3,4), D. Rémy (1,2,4), K. Bataille (5), V. Cayol (3), J. Clavera (6), D. Comte (4), G. Gabalda (1,2,4), K. Gonzales (7), L. Lara (6), D. Legrand (4), O. Macedo (8), J. Naranjo (6), P. Mothes (9), A. Pavez (1,10), & C. Robin (1,3,4) (1) IRD (Institut de Recherche pour le Développement) - [email protected], [email protected], [email protected] ; (2) UMR5563 Toulouse, France; (3) UMR6524 Clermont-Ferrand, France; (4) Deptos de Geofisica / Geologia, Facultad de Ciensas y Matematicas, Universidad de Chile , Blanco Encalada 2002, Santiago, Chile ; (5) Universidad de Concepcion, Chile; (6) SERNAGEOMIN, Santiago, Chile ; (7) CON IDA, Lima, Perù, (8) Instituto Geofisico dei Perù, Arequipa, Perù ; (9) Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador ; (10) Institut de Physique du Globe de Paris, Lab. de Gravimétrie et Géodynamique KEYWORDS : Radar interferometry, geodetic surveys, ground deformations, Andes, volcanoes INTRODUCTION Within the last few years, several SAR interferometry studies mostly based on ERS-IIERS-2 radar data have been conducted to monitor the volcanic deformations along the South American volcanic arc. They allowed a first evaluation of the potentialities of INSAR imaging in the northern, central and southern volcanic zones (respectively NVZ, CVZ and SVZ) as weil as the first quantitative satellite measurements of volcanic unrest since the initial launch of ERS-l satellite (1992) to nowdays.
    [Show full text]
  • The Volcano Disaster Assistance Program—Helping to Save Lives Worldwide for More Than 30 Years
    The Volcano Disaster Assistance Program—Helping to Save Lives Worldwide for More Than 30 Years What do you do when a sleeping volcano roars back to have allowed warnings to be received, understood, and acted life? For more than three decades, countries around the world upon prior to the disaster. have called upon the U.S. Geological Survey’s (USGS) Volcano VDAP strives to ensure that such a tragedy will never hap- Disaster Assistance Program (VDAP) to contribute expertise and pen again. The program’s mission is to assist foreign partners, equipment in times of crisis. Co-funded by the USGS and the at their request, in volcano monitoring and empower them to U.S. Agency for International Development’s Office of U.S. For- take the lead in mitigating hazards at their country’s threaten- eign Disaster Assistance (USAID/OFDA), VDAP has evolved ing volcanoes. Since 1986, team members have responded to and grown over the years, adding newly developed monitoring over 70 major volcanic crises at more than 50 volcanoes and technologies, training and exchange programs, and eruption have strengthened response capacity in 12 countries. The VDAP forecasting methodologies to greatly expand global capabilities team consists of approximately 20 geologists, geophysicists, and that mitigate the impacts of volcanic hazards. These advances, in engineers, who are based out of the USGS Cascades Volcano turn, strengthen the ability of the United States to respond to its Observatory in Vancouver, Washington. In 2016, VDAP was a own volcanic events. finalist for the Samuel J. Heyman Service to America Medal for VDAP was formed in 1986 in response to the devastating its work in improving volcano readiness and warning systems volcanic mudflow triggered by an eruption of Nevado del Ruiz worldwide, helping countries to forecast eruptions, save lives, volcano in Colombia.
    [Show full text]
  • Climbing Pichu Pichu
    Climbing Pichu Pichu Day 1: Arequipa - Laguna de Salinas We leave Arequipa at 8am in a private vehicle. We drive 3 hours to the Laguna de Salinas perched at 4300m high. This lagoon is a natural habitat for a very special wildlife: flamingos. We will also see llamas, alpacas and vicunas. During a good part of the year, the lagoon is actually a salar. The scenery is so spectacular, it's like in Bolivia, especially as the lagoon is surrounded by the majestic Misti volcano (5825m), Pichu Pichu (5664) and also Ubinas volcano (5672m) which is the most active one in Peru. Eruptions guaranteed! But no worries, that's safe for us ... We camp at 4400m near aguas calientes (hot springs) and will enjoy a great sunset! Day 2: Pichu Pichu - Arequipa Today, we'll wake up early and head to the "Pichu Pichu Basecamp" located at about 4700m. Today is Ascension Day! We'll have 900m of ascent, about 5-6 hours round trip. You will be rewarded for your efforts once arrived at the top. The stunning view of Arequipa and volcanoes Misti and Chachani, but also over the lagoon (salar) and Ubinas volcano. The descent is great, you can jump and slide on the steep hills of Pichu Pichu! We will finally get some time to rest on our way back to Arequipa in 4x4. Approximate arrival time: 5pm. This adventure is for you! Price per person, based on a tour for at least 2 persons Included: -Experienced guide -Tents, mattresses, cooking equipment, etc. -Pick up and drop off to your hotel and transport to and from the base of the mountain -All meals while trekking (one each of lunch, dinner and breakfast) Please note that you have to carry the equipement by yourself.
    [Show full text]
  • The Case of Ubinas Volcano, Peru, Revealed by Geophysical Surveys
    Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys Katherine Gonzales, Anthony Finizola, Jean-François Lénat, Orlando Macedo, Domingo Ramos, Jean-Claude Thouret, Michel Fournier, Vicentina Cruz, Karine Pistre To cite this version: Katherine Gonzales, Anthony Finizola, Jean-François Lénat, Orlando Macedo, Domingo Ramos, et al.. Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys. Journal of Volcanology and Geothermal Research, Elsevier, 2014, 276, pp.132-144. 10.1016/j.volgeores.2014.02.020. hal-01136351 HAL Id: hal-01136351 https://hal.archives-ouvertes.fr/hal-01136351 Submitted on 19 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Asymmetrical structure, hydrothermal system and fi edi ce stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys a,⁎ b,1 b a Katherine Gonzales , Anthony Finizola , Jean-François Lénat , Orlando Macedo , Domingo Ramos a,2 c b,3 a,2 b,c , Jean-Claude Thouret , Nicolas Fournier , Vicentina Cruz ,Karine Pistre a Instituto Geofísico del Perú (IGP), Arequipa, Peru b Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, IRD, R 163, CNRS, UMR 6524, BP 10448, 63038 Clermont-Ferrand, France c Université de Lorraine, UMR 7359 GeoRessources, BP 70239, Vandoeuvre-lès-Nancy, France abstract Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley.
    [Show full text]
  • Investigaciones Arqueológicas De Alta Montaña En El Sur Del Perú
    Chungará (Arica) v.33 n.2 Arica jul. 2001 Páginas 283-288 INVESTIGACIONES ARQUEOLÓGICAS DE ALTA MONTAÑA EN EL SUR DEL PERÚ José Antonio Chávez Chávez* *Universidad Católica de Santa María, Museo Santuarios Andinos, Samuel Velarde 305 Urbanización San José Umacollo, Arequipa, Perú. Las investigaciones arqueológicas en Alta Montaña, en el Sur del Perú las iniciamos hacia el año de 1980 junto al Dr. Johan Reinhard, continuando desde entonces en forma ininterrumpida en la investigación bibliográfica y de campo, logrando con ello obtener una amplia información acerca de los Santuarios de los Incas en Alta Montaña, referidos a los volcanes de Ampato, Pichu Pichu, Sara Sara, Hualca Hualca, Huarancante, Misti, Coropuna, Calcha y otros. En la actualidad, se han logrado poner en salvaguarda ocho cuerpos de los volcanes de Ampato (4 cuerpos), del Pichu Pichu (3), del Sara Sara (1). Producto de estas investigaciones, tenemos una mejor conceptualización y conocimiento acerca de las ofrendas y sacrificios humanos realizados por los Incas a las Montañas (Apus). Una parte de los relatos ofrecidos por los cronistas, se ven confirmados por nuestros trabajos. Los santuarios investigados en el Pichu Pichu y Ampato confirman que los Incas han realizado sus ofrendas en dichas montañas a raíz de las erupciones volcánicas del Misti (aproximadamente hacia el año 1440-1450), y del Sabancaya (aproximadamente en el año 1466) . Los resultados preliminares obtenidos en la investigación multidisciplinaria abren nuevos canales entre ellas mismas, lo que se convierte en una riqueza de información invalorable: DNA, polen, microorganismos, químicos, Cat Scan etc. Palabras claves: Santuarios de altura, momias, sacrificios humanos, incas.
    [Show full text]
  • San Juan De Tarucani Aquina 0
    74° W 72° W 230000 235000 240000 245000 250000 255000 260000 265000 270000 275000 280000 285000 290000 295000 300000 305000 310000 315000 320000 ANGARAES HUANTA MADRE MANU HUANCAVELICA LA MAR CALCA DE DIOS LA CONVENCION Jatun Zapato CASTROVIRREYNA URUBAMBA PAUCARTAMBO Chapine 155 4675 ta HUAMANGA Ninalaque Ninalaca u Socamuyo Emp. PE-34-E (Dv.Vizcachane) e ay c Cuevillas Pinapina mb 4490 Pusca Pusca c Pillo Su A ío Vincocaya ío CHINCHEROS CUSCO R R Pausa CANGALLO ANTA ESTACION VINCOCAYA Catacorani Paña Suhutaña APURIMAC CUSCO Sorahuara HUAYTARA VILCAS QUISPICANCHI Emp. AR-699 (Jancullo). Mollehuaya VICTOR FAJARDO HUAMAN ANDAHUAYLAS PARURO Pampa Chapine Pascana Cursani 4527 ABANCAY Acochaca a COTABAMBAS Chojona t e Chacala Jancullo u q 165 S HUANCA o l S ° l SANCOS o ° Yuracpuquio 4 ACOMAYO C 4 Pesquepata Tocruyo 1 GRAU Chuyamayo o CANCHIS CARABAYA 1 Sihuatana Llallahui í SUCRE R 0 PU 0 AR Emp. AR-121 Yanacancha 0 700 1087 0 ICA 0 Vizcachani «¬ «¬ 0 YANQUE 20 PALPA 0 Salkoyo AR 0 Humarutaña Huilahaje ANTABAMBA 4 Toroya 4 CANAS 699 Pucalacala AYACUCHO AYMARAES CHUMBIVILCAS 2 ¬ 2 Collpa « Morotaña Palcani Chiquiomaña 8 Vizcachane 8 Ccasa Huasi Huesa Llahui Cochapata LUCANAS MELGAR e Yanacaca PONTON in 20 r y Quesine a a b Apacheta ICA m m Patahuasi Jatunpuquio a u 150 c Tacune l S Huañatera Yuraccancha NASCA ESPINAR PUNO A ío LA UNION R PARINACOCHAS a Marca Marca Yanasallla Llallahui d Huallata Hacienda Icshuya a Laguna r PAUCAR b Vizacachani Chico Herocollo Ecsuya. e Artaña u a Ixsuya DEL SARA Q s Pallanicaceres Pucatara u Chuca Machane Rí SARA Huaranhuma a SAN ANTONIO o C P Quellhuani o Ccoli Quesitira lqu o iu í San Antonio de Chuca.
    [Show full text]