10-16 本文 Akira Hasegawa.Indd

Total Page:16

File Type:pdf, Size:1020Kb

10-16 本文 Akira Hasegawa.Indd Maintenance of Order and the Entropy Law −Examples in Life, Earth Environment and Fusion Device− Professor Emeritus, Osaka University E-Mail: [email protected] Akira Hasegawa Abstract: When work is done in a closed system, increased entropy on the earth surface and sustain energy is converted to heat and physical entropy, the habitable environment, thus these are the most the ratio of the system heat to the system desirable energy source. not because of the temperature, increases. Law of increase of entropy, abandance of the resources as commonly considered. when broadly interpreted, leads to deterioration of Maintenance of order of a system or a unit is only order in a closed system. Thus the entropy law possible by a continuous ejection of the increased presents challenges to maintenance of life, the earth entropy out of the system which is often more environment and other sytems that require important than intake of energy to do internal work. sunstained internal order. In particular, creation of life and maintenance thereof presents the most Keywords: entropy, life, thermodynamics, the earth interesting challenge to the implication of the environment, system order. entropy law. From the entropy point of view, the life is maintained by self-organization and maintenance of order based on DNA information 1. Introduction with a help of intake of negentropy and exhaust of In a closed system, when work is done, the energy increased entropy outside of the body. Such is is converted to heat and the entropy increases. The possible only in an open system where exchange of entropy law is interpretted as temporal deterioration entropy with external environment is allowed. Here of quality of energy in thermodynamics or that of the negentropy is defined as a free energy that can order in information theory in a system. The do work a result of which leads to increase of the entropy law applies to a closed system. In an open system internal entropy[1]. The global balance of system where exchange of entropy with external entropy needed to sustain lives on the earth is environment is allowed, the system can sustain low provided by the negentropy flow from the sun and entropy state, or an ordered state, even when work the exhaust of increased entropy from the earth in is done internally, provided a proper intake of the form of the black body infrared radiation. negentropy [1] and simultaneous ejection of Particular emphasis is placed in this paper on the increased entropy out of the system are performed necessity of exhaust of increased entropy to the continuously. Here negentropy is defined as a form external environment for the healthy maintenance of of free energy in physical or chemical processes a life and habitable environment of the earth, or an and/or order in information theory whereby when order in a system in general. Desease and aging are work is done the system entropy increases and caused by increase of internal entropy of a body and negentropy decreases. Schrödinger [2] is the first to similarly the health of the earth environment is point out importance of intake of negentropy rather deteriorated by the increase of entropy in the form than energy for a life. However he failed to notice of heat, chemical and nuclear waste unless increased the importance of exhaust of increased entropy to entropy is ejected out to outer space. In this regard external environment for healthy maintenance of a only the solar energy, geothermal energy and/or the life or to maintain the low entropy state, that is, the tidal energy can play the role that does not lead to order in a body. Note that intake of oxygen, food ― 10 ― (hydrocarbon and protein) and other nutrition is earth to outer space. However, during the past considered as import ingedient of negentropy. The century human started to use energies from fossile work is done inside a body in the form of muscle and nuclear fuels. The problem of this is not motions, blood circulations, electrical switching of whether these energy resouces are available in synapses and neurons as well as regeration of cells future or not, but whether the increased entropy as based on DNA information from aminoacid. a consequence of the work done by these energies Increased entropy produced in these works is can be exhaused out of the earth or not. exhausted out of the body in the form of carbon Unfortunately the answer is no. Fossil fuels increases dioxides, water, heat and other wastes. The autofugy carbon dioxide contents in the air which reduces the plays the important role of cleaning up the internal ability of infrared ratiation from the earth thus entropy of the cell [3]. Only due to the proper reduces entropy exhaust from the earth at least for ejection of increased entropy from the body, the a period of time until a new equilibrium is proper order and low entropy state of a body, established.. Similarly use of nuclear energy consequently the life can be sustained. For example accumulate nuclear wastes both from the used fuels if carbon dioxide and heat remain in the body after and from the radioactivated reactor structures, thus chemical reaction of oxigen with glucose, the life is the increased radioactive entropy raminas on the terminated almost immediately. Therefore intake of earth surface and can not be ejected out to space. negentropy is not equivalent to exhaust of increased Similar to the life activity, the increase of entropy on entropy. Aging is considered to be a consequence of the earth surface results in unhealthy environment gradual accumulation of entropy failed to be and eventually leads to unhabitable environment of exhausted, while desease is caused by undesirable the earth. The concept of necessity of ejection of accumulation or internal increase of entropy. In increased entropy out of a system in order to order to maintain a life, increased entropy should be maintain the internal low entropy state or the taken out of the body. An exponential increase of internal order applies broadly to any system that entropy may occur if a system is locally closed, an requires internal order. Other example includes example of which is a cancer. Cancer cells are no fusion devices, corporation structure, national order different from ordinary cells, thus some people and/or domestic order. It is clear from these believes they do not represent the increased examples, the exhaust of increased entropy is or entropy. However the unpredicatable and even more important than resources of negentropy. uncontrollable growth of the cell represents an In this manuscript, by taking examples of the earth, increase of disorder and is nothing but an increased life sytem, and a fusion device, I present examples of entropy from the point of informatin theory. how an order, or a low entropy state can be In the example of the earth environment, the maintained in an open system that allows entropy negentropy source that sustains the order on the exchange with external environment. earth surface including the life activities is the solar radiation. The solar radiation heats the air to a 2. Merit of the sun as the ultimate source of proper temperature for life activities and provides negentropy photons for various photosyntheses for vegitation Low entropy of a system is maintained by and animals. When the work is done, the solar continuous ejection of increased entropy out side of radiation becomes heat which is radiated out of the a system. In this section we take the example of the earth in the form of infrared black body radiation so earth and demonstrate how the orde, or the that there is no net increase of entropy on the earth habitable environment of the earth is maintained surface. Here again the habitable environment and inspite of continuous increase of internal entropy by the order on the earth surface are sustained only the atmospheric heating and various life activities. because of the continuous entropy ejection from the Note that the sun is in its thermal equilibrium and is ― 11 ― regarded to be at the maximum entropy state. The taken in and oxygen is exhausted out where the black body radiation from the sun, the solar solar radiation is used in the reaction. The radiation, is in thermal equilibrium in the solar photosynthesis helps production of oxygen from environment and has no negentropy there. The carbon dioxide and water as well as the synthesis of earth is also in thermal equilibrium in that the heat the plant body itself. Since the light, which carries that comes from the solar radiation is continuously the electromagnetic energy, has lower entropy than radiated out of the earth by her own blackbody chemical entropy of carbon dioxide and water, it can ratiation. However, entropy carried in by solar overcome the decrease of chemical entropy by radiation is much less than that radiated from the bringing in enough electromagnetic negentropy to earth because the radiation temperature of the sun the system. This is possible because the grade of is much higher than that of the earth. Or electromagnetic energy is higher than that of alternatively, number of photons in the solar chemical energy[1]. raditaion at visible wavelengths is much less than The sun is generally considered as the energy that of the black body radiation from the earth at source for our lives. This is not quite correct since infra-red radiation. Note that number of photons in the total energy that comes from the sun to the radiation is given by the energy of the radiation earth is reemitted out of the earth to outer space in devided by the frquency of the photons.
Recommended publications
  • The Alfven Wave Zoo
    Open Access Library Journal 2020, Volume 7, e6378 ISSN Online: 2333-9721 ISSN Print: 2333-9705 The Alfven Wave Zoo A. S. de Assis1, C. E. da Silva2, V. J. O. Werneck de Carvalho3 1Fluminense Federal University, Niteroi, RJ, Brasil 2State University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil 3Departamento de Geopfísica, Universidade Federal Fluminense, Niterói, RJ, Brasil How to cite this paper: de Assis, A.S., da Abstract Silva, C.E. and Werneck de Carvalho, V.J.O. (2020) The Alfven Wave Zoo. Open Access It has been shown that a variety of names are assigned to the original MHD Library Journal, 7: e6378. Alfven wave derived originally by Hannes Alfven in the 40s (Nature 150, https://doi.org/10.4236/oalib.1106378 405-406 (1942)), and those names are used due to the different magnetic Received: April 30, 2020 geometries where the target plasma could be confined, that is, in laboratory, Accepted: June 27, 2020 in fusion, in space, and in astrophysics, where one could use as working geo- Published: June 30, 2020 metry systems such as cartesian, cylindrical, toroidal, dipolar, and even more complex ones. We also show that different names with no new dramatic new Copyright © 2020 by author(s) and Open Access Library Inc. physics induce misleading information on what is new and relevant and what This work is licensed under the Creative is old related to the considered wave mode. We also show that changing the Commons Attribution International confining geometry and the background plasma kinetic properties, the Alfven License (CC BY 4.0).
    [Show full text]
  • The Dipole Fusion Confinement Concept: a White Paper for the Fusion Community
    The Dipole Fusion Confinement Concept: A White Paper for the Fusion Community D. Garnier and M. Mauel Department of Applied Physics, Columbia University New York, NY 10027 L. Bromberg and J. Kesner MIT Plasma Science and Fusion Center Cambridge, MA 02139 J. M. Dawson Department of Physics, UCLA Los Angeles, CA 90024 April 1998 1 Introduction The dipole magnetic field is the simplest and most common magnetic field configuration in the universe. It is the magnetic far-field of a single, circular current loop, and it rep- resents the dominate structure of the middle magnetospheres of magnetized planets and neutron stars. The use of a dipole magnetic field generated by a levitated ring to confine a hot plasma for fusion power generation was first considered by Akira Hasegawa after participating in the Voyager 2 encounter with Uranus [1]. Hasegawa recognized that the inward diffusion and adiabatic heating that accompanied strong magnetic and electric fluctuations in planetary magnetospheres represented a fundamental property of strongly magnetized plasmas not yet observed in laboratory fusion experiments. For example, it is well-known that global fluctuations excited in laboratory fusion plasmas result in rapid plasma and energy loss. In contrast, large-scale fluctuations induced by sudden compressions of the geomagnetic cavity (due to enhancements in solar wind pressure) or by unsteady convections occurring during magnetic substorms energize and populate the energetic electrons trapped in the Earth's magnetosphere [2]. The fluctuations induce in- ward particle diffusion from the magnetospheric boundary even when the central plasma 1 density greatly exceeds the density at the edge. Hasegawa postulated that if a hot plasma having pressure profiles similar to those observed in nature could be confined by a labo- ratory dipole magnetic field, this plasma might also be immune to anomalous (outward) transport of plasma energy and particles.
    [Show full text]
  • 2005 Annual Report American Physical Society
    1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists.
    [Show full text]
  • 25Th IAEA Fusion Energy Conference LIST of PARTICIPANTS
    25th IAEA Fusion Energy Conference St Petersburg, Russian Federation 13 – 18 October 2014 LIST OF PARTICIPANTS (6 October 2014) IAEA-CN-221 Designating Member Name of Participant Address State / Organization AFGHANISTAN 1 Khalid, Fazal Rahman Afghan Atomic Energy High Commisison Near Silo-e-Markaz PO Box 1050 Central Post Office KABUL AFGHANISTAN EMail: [email protected] ALGERIA 2 Sid, Abdelaziz University of Batna Department of Matter Sciences Faculty of Sciences Road of Khelloufi Mohammed El Hadi no. 1 BATNA 05000 DZ ALGERIA EMail: [email protected]; [email protected] ANGOLA 3 Lemos, Pedro Carlos Domingos Atomic Energy Regulatory Authority Rua Ho-Chi-Min LUANDA ANGOLA EMail: [email protected] 4 Vieira Lopez Junior, Felix Ministry of Energy and Water Affairs Rua Congego Manuel das Neves 234 LUANDA ANGOLA EMail: [email protected] 5 Vilinga, Job Feca Martins Ministry of Energy and Water Affairs Rua Conego Manuel das Neves 234 LUANDA ANGOLA EMail: [email protected] ARGENTINA 6 Farengo, Ricardo Comision Nacional de Energia Atomica Bustillo 9500 8400 BARILOCHE Rio Negro ARGENTINA Fax: +542944445299 EMail: [email protected] 06-Oct-14 Page 2 of 118 Designating Member Name of Participant Address State / Organization AUSTRALIA 7 Blackwell, Boyd Australian National University Research School of Physics and Engineering Australian National University ACTION 0200 AUSTRALIA EMail: [email protected] 8 Hole, Matthew Australian National University Mills Road 0200 CANBERRA AUSTRALIA EMail: [email protected]
    [Show full text]
  • Research Report
    INSTITUTE OF PIJiSMA PHYSICS NAGOYA UNIVERSITY DAISEN SUMMER SCHOOL (Laser Fusion Workshop) IPPJ-235 November 1975 RESEARCH REPORT NAGOYA, JAPAN DAISEN SUMMER SCHOOL (Laser Fusion Workshop) IPPJ-235 November 1975 Further communication about this report is to be sent co the Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya, JAPAN. Contents Preface List of Participants 1. Two-Step Laser-Driven Fusion Reactor Y. Yabe, K. Nishihara and J. Mizui (6) 2. Filamentation and Decay of Laser Light in Plasmas K. Nishihara, Y. Mima, J. Mizui, M. Inutake, T. Tange, Y. Kiwamoto and M. Kako (13) 3. Magnetic Field Generation Due to Resonant Absorption K. Nishihara, Y. Ohsawa, Y. Mima and T. Tange ..... (19) 4. A Design of. Steady State Fusion Burner A. Hasegawa, T. Hatori, K. Itoh, T. Ikuta, Y. Kodama and K. Nozaki (27) 5. Magnetically Focused Fast Ion in Laser Target Plasma K. Itoh and S. Inoue (44) 1 - Preface During the last month of my visit to Japan e.s a NSF exchange scientist, I decided to spend a week to serve to organize a workshop to attack problems in the general area of laser-plasma interaction and laser fusion. In response to my proposal, Prof. C. Yamanaka, T. Taniuti and K. Takayama kindly made arrangement for the financial support and the meeting was materialized in July 16 to 22nd., 1975- The arrangement of the meeting including the site selection and other business matters were kindly made by Drs. K. Mima and T. Yamanaka. The meeting started first by hoaring current problems from the experimentalists.
    [Show full text]
  • Frontiers in Plasma Physics Research: a Fifty-Year Perspective from 1958 to 2008-Ronald C
    • At the Forefront of Plasma Physics Publishing for 50 Years - with the launch of Physics of Fluids in 1958, AlP has been publishing ar In« the finest research in plasma physics. By the early 1980s it had St t 5 become apparent that with the total number of plasma physics­ related articles published in the journal- afigure then approaching 5,000 - asecond editor would be needed to oversee contributions in this field. And indeed in 1982 Fred L. Ribe and Andreas Acrivos were tapped to replace the retiring Fran~ois Frenkiel, Physics of Fluids' founding editor. Dr. Ribe assumed the role of editor for the plasma physics component of the journal and Dr. Acrivos took on the fluid Editor Ronald C. Davidson dynamics papers. This was the beginning of an evolution that would see Physics of Fluids Resident Associate Editor split into Physics of Fluids A and B in 1989, and culminate in the launch of Physics of Stewart J. Zweben Plasmas in 1994. Assistant Editor Sandra L. Schmidt Today, Physics of Plasmas continues to deliver forefront research of the very Assistant to the Editor highest quality, with a breadth of coverage no other international journal can match. Pick Laura F. Wright up any issue and you'll discover authoritative coverage in areas including solar flares, thin Board of Associate Editors, 2008 film growth, magnetically and inertially confined plasmas, and so many more. Roderick W. Boswell, Australian National University Now, to commemorate the publication of some of the most authoritative and Jack W. Connor, Culham Laboratory Michael P. Desjarlais, Sandia National groundbreaking papers in plasma physics over the past 50 years, AlP has put together Laboratory this booklet listing many of these noteworthy articles.
    [Show full text]
  • APS Launches New Web Site for the Public
    December 2000 NEWS Volume 9, No. 11 A Publication of The American Physical Society http://www.aps.org/apsnews Check It Out and Tell APS Launches New Web Site for the Public Your Friends This month APS is launching feature a “Picture of the Week,” il- APS members are urged to PhysicsCentral.com, a brand new lustrating natural phenomena and visit PhysicsCentral.com, and web site targeted at the general pub- the physicists who investigate to offer their comments and lic. “The site is designed to bring the them. suggestions. This can be done importance and excitement of phys- There is a news section that pre- either by using the “Contact ics to everyone,” said Jessica Clark, sents breaking news as well as Us” button on the site, or by APS outreach specialist who is in features prepared by the Inside Sci- emailing Jessica Clark directly charge of its overall management. ence News Service of AIP. Those at [email protected]. “While the site highlights the re- who want to know how things They are also urged to search and activities of many APS work can consult a weekly “Dear spread the word by inviting members, PhysicsCentral is intended Lou” column contributed by Uni- relatives, friends, students to reach beyond the physics com- versity of Virginia physicist Louis and anyone else with access munity. We need our members to A. Bloomfield, and they can ask to the web and curiosity encourage non-physicists to visit the Lou their own questions as well. A about the physical world to site as well,” Clark adds.
    [Show full text]
  • Cv Hsxie.Pdf
    Hua-sheng XIE (谢华生) November 4, 2020 Born: Nov. 14, 1987, Hengyang, Hunan, China Mail: a). 河北廊坊开发区华祥路新源东道新奥科技园智能大厦,065001; b). Huaxiang Road, Economic and Technological Development Zone, LangFang Hebei, China 065001 E-mail: xiehuasheng[at]enn.cn, huashengxie@{gmail.com, 126.com} Tel: +86-177-3368-5518 Web: http://hsxie.me 2018.02- Chief Scientist of Fusion Simulation ENN Fusion Technology R&D Center (ENN-FTRC), Deputy Director ENN Science and Technology Development Co.,Ltd. [新奥科技发展有限公司(新奥 能源研究院)] Education • Postdoc 2015.10 - 2018.02, School of Physics, Peking University • Ph.D. Plasma Physics, 2015, Zhejiang University Thesis: Numerical Simulations of Micro-turbulence in Tokamak Edge (Advisor: Yong XIAO) • B.S. Physics, 2010, Zhejiang University Thesis: Study of ES1D Beam-Plasma Interactions (Advisor: Prof. Liu CHEN) Research interests (up to now) • Compact fusion. • Fundamental plasma theories (especially, space plasma, astrophysics) • Algorithms for numerical solutions or simulations of linear and nonlinear plasma problems 1 Hua-sheng XIE · 2 · • Tokamak physics (Alfvén waves/eigenmodes, ballooning mode, edge, ...) • Dipole field (space and laboratory, see gkd) Publications 1. H. S. Xie, Generalized Plasma Dispersion Function: One-solve-all Treatment, Visualizations, and Application to Landau Damping, Physics of Plasmas, 2013, 20, 092125. [13a] 2. H. S. Xie, Constant Residual Electrostatic Electron Plasma Mode in Vlasov- Ampere System, Physics of Plasmas, 2013, 20, 112108. [13b] 3. H. S. Xie, PDRF: A General Dispersion Relation Solver for Magnetized Multi- fluid Plasma, Computer Physics Communications, 2014, 185, 670šC675. [14a] 4. W. Chen, Z. Qiu, X. T. Ding, H. S. Xie, L. M. Yu, X. Q. Ji, J. X. Li, Y.
    [Show full text]
  • Fusion Science and Technology VOLUME 72 · NUMBER 3 · OCTOBER 2017
    Fusion Science and Technology VOLUME 72 · NUMBER 3 · OCTOBER 2017 Selected papers from the Twenty-Second Topical Meeting on the Technology of Fusion Energy—Part 1 August 21–25, 2016, Philadelphia, Pennsylvania Contents vii Preface Adam Cohen, Arnie Kellman, Susana Reyes TECHNICAL PAPERS 199 Current Status of Large Helical Device and Its Prospect for Deuterium Experiment M. Osakabe, Y. Takeiri, T. Morisaki, G. Motojima, K. Ogawa, M. Isobe, M. Tanaka, S. Murakami, A. Shimizu, K. Nagaoka, H. Takahashi, K. Nagasaki, H. Takahashi, T. Fujita, Y. Oya, M. Sakamoto, Y. Ueda, T. Akiyama, H. Kasahara, S Sakakibara, R. Sakamoto, M. Tokitani, H. Yamada, M. Yokoyama, Y. Yoshimura, LHD Experiment Group 211 The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions J. Rapp 222 Progress in the U.S./Japan PHENIX Project for the Technological Assessment of Plasma Facing Components for DEMO Reactors Yutai Katoh, Daniel Clark, Yoshio Ueda, Yuji Hatano, Minami Yoda, Adrian S. Sabau, Takehiko Yokomine, Lauren M. Garrison, J. Wilna Geringer, Akira Hasegawa, Tatsuya Hinoki, Masashi Shimada, Dean Buchenauer, Yasuhisa Oya, Takeo Muroga 233 Recent R&D Results on Fusion Nuclear Technology for ITER and DEMO Reactor in Japan Toshihiko Yamanishi, Norikiyo Koizumi, Masataka Nakahira, Yoshihiko Nunoya, Satoshi Suzuki, Hiroyuki Tobari, Mieko Kashiwagi, Takaaki Isono, Takashi Inoue, Makoto Sugimoto, Yoshinori Kusama, Yoshinori Kawamura, Hiroyasu Tanigawa, Masaru Nakamichi, Takashi Nozawa, Tsuyoshi Hoshino, Yoshio Ueda, Yuji Hatano, Takeo Muroga, Satoshi Fukada 242 Examples of What Fusion Energy Can Contribute to the Near Term Needs of Society Before We Build the First Fusion Power Plant G. L. Kulcinski, J.
    [Show full text]
  • Dean's List Australia
    THE OHIO STATE UNIVERSITY Dean's List SPRING SEMESTER 2020 Australia Data as of June 15, 2020 Sorted by Zip Code, City and Last Name Student Name (Last, First, Middle) City State Zip Fofanah, Osman Ngunnawal 2913 Wilson, Emma Rose Jilakin 6365 THE OHIO STATE UNIVERSITY OSAS - Analysis and Reporting June 15, 2020 Page 1 of 142 THE OHIO STATE UNIVERSITY Dean's List SPRING SEMESTER 2020 Bahamas Data as of June 15, 2020 Sorted by Zip Code, City and Last Name Student Name (Last, First, Middle) City State Zip Campbell, Caronique Leandra Nassau Ferguson, Daniel Nassau SP-61 THE OHIO STATE UNIVERSITY OSAS - Analysis and Reporting June 15, 2020 Page 2 of 142 THE OHIO STATE UNIVERSITY Dean's List SPRING SEMESTER 2020 Belgium Data as of June 15, 2020 Sorted by Zip Code, City and Last Name Student Name (Last, First, Middle) City State Zip Lallemand, Martin Victor D Orp Le Grand 1350 THE OHIO STATE UNIVERSITY OSAS - Analysis and Reporting June 15, 2020 Page 3 of 142 THE OHIO STATE UNIVERSITY Dean's List SPRING SEMESTER 2020 Brazil Data as of June 15, 2020 Sorted by Zip Code, City and Last Name Student Name (Last, First, Middle) City State Zip Rodrigues Franklin, Ana Beatriz Rio De Janeiro 22241 Marotta Gudme, Erik Rio De Janeiro 22460 Paczko Bozko Cecchini, Gabriela Porto Alegre 91340 THE OHIO STATE UNIVERSITY OSAS - Analysis and Reporting June 15, 2020 Page 4 of 142 THE OHIO STATE UNIVERSITY Dean's List SPRING SEMESTER 2020 Canada Data as of June 15, 2020 Sorted by Zip Code, City and Last Name City State Zip Student Name (Last, First, Middle) Beijing
    [Show full text]
  • Dancing with Chains: a Case Study of Native Mandarin Chinese Teachers and Pedagogy in U.S. Higher Education Jing Tong University of St
    University of St. Thomas, Minnesota UST Research Online Education Doctoral Dissertations in Leadership School of Education 2015 Dancing with Chains: A Case Study of Native Mandarin Chinese Teachers and Pedagogy in U.S. Higher Education Jing Tong University of St. Thomas, Minnesota Follow this and additional works at: https://ir.stthomas.edu/caps_ed_lead_docdiss Part of the Education Commons Recommended Citation Tong, Jing, "Dancing with Chains: A Case Study of Native Mandarin Chinese Teachers and Pedagogy in U.S. Higher Education" (2015). Education Doctoral Dissertations in Leadership. 73. https://ir.stthomas.edu/caps_ed_lead_docdiss/73 This Dissertation is brought to you for free and open access by the School of Education at UST Research Online. It has been accepted for inclusion in Education Doctoral Dissertations in Leadership by an authorized administrator of UST Research Online. For more information, please contact [email protected]. Dancing with Chains: A Case Study of Native Mandarin Chinese Teachers and Pedagogy in U.S. Higher Education A DISSERTATION SUBMITTED TO THE FACULTY OF THE SCHOOL OF EDUCATION OF THE UNIVERSITY OF ST. THOMAS ST. PAUL, MINNESOTA By Jing Tong IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF DOCTOR OF EDUCATION 2015 ii © Copyright by Jing Tong 2015 iii UNIVERSITY OF ST. THOMAS MINNESOTA iv ACKNOWLEDGEMENTS This dissertation could not have been completed without the great support I have received from so many people over the years. I would like to extend my sincerest thanks and appreciation to the following people who have warmed my heart, lifted my spirit, and enlightened my mind to accomplish this study and achieve personal, academic, and professional transformations.
    [Show full text]
  • Review of Zonal Flows
    iSM Q9I5-633X JP0555001 NATIONAL INSTITUTE FOR FUSION SCIENCE Review of Zonal Flows P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm (Received - Sep. 9, 2004 ) NIFS-805 Oct. 2004 RESEARCH REPORT NIFS Series This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. The views presented here are solely those of the authors. This document is intended for information only and may be published in a journal after some rearrangement of its contents in the future. Inquiries about copyright should be addressed to the Research Information Center, National Insitute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan. E-mail: [email protected] <Notice about photocopying> In order to photocopy any work from this publication, you or your organization must obtain permission from the following organizaion which has been delegated for copyright for clearance by the copyright owner of this publication. Except in the USA Japan Academic Association for Copyright Clearance (JAACC) 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan Phone: 81-3-3475-5618 FAX: 81-3-3475-5619 E-mail: [email protected] In the USA Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923 USA Phone: 1-978-750-8400 FAX: 1-978-646-8600 Review of Zonal Flows P. H. Diamond1, S.-I. Itoh2, K. Itoh3, T. S. Hahm4 1 University of California San Diego, La Jolla, CA 92093-0319, USA 2 Institute for Applied Mechanics, Kyushu University 87, Kasuga 816-8580, Japan 3 National Institute for Fusion Science, Toki 509-5292, Japan 4 Princeton University, Plasma Physics Laboratory, Princeton, NJ 08543, USA Abstract A comprehensive review of zonal flow phenomena in plasmas is presented.
    [Show full text]