metals Article Development of a Mass and Energy Balance Model and Its Application for HBI Charged EAFs Niloofar Arzpeyma 1,2,*, Rutger Gyllenram 1,2 and Pär G. Jönsson 1 1 Department of Materials Science and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden;
[email protected] (R.G.);
[email protected] (P.G.J.) 2 Kobolde & Partners AB, 11860 Stockholm, Sweden * Correspondence:
[email protected]; Tel.: +46-737-585-050 Received: 4 February 2020; Accepted: 26 February 2020; Published: 27 February 2020 Abstract: A static mass and energy balance model combined with a MgO saturation slag model is developed for electric arc furnaces. The model parameters including distribution ratios and dust factors are calibrated for a specific furnace using experimental data. Afterward, the model is applied to study the effect of charging different amounts of hot briquetted iron (HBI) on energy consumption, charged slag former amount, and slag composition. The following results were obtained per each 1% increase of HBI additions: (i) a 0.16 Nm3/t decrease in the amount of injected oxygen for metal oxidation, (ii) a 1.29 kWh/t increase in the electricity consumption, and (iii) a 34 kg increase in the amount of the slag. Keywords: HBI; mass balance; energy balance; MgO saturation 1. Introduction Many studies focusing on electric arc furnace (EAF) operations have been carried out during the last 30 years in order to improve the steel quality and to make the melting process more efficient, economical and environmentally friendly [1–3]. Any improvement to an EAF requires an extensive study of that specific furnace since each furnace is used to produce different steel grades.