Original Article Effect of Adenoviral Delivery of Prodynorphin Gene on Experimental Inflammatory Pain Induced by Formalin in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Effect of Adenoviral Delivery of Prodynorphin Gene on Experimental Inflammatory Pain Induced by Formalin in Rats Int J Clin Exp Med 2014;7(12):4877-4886 www.ijcem.com /ISSN:1940-5901/IJCEM0003574 Original Article Effect of adenoviral delivery of prodynorphin gene on experimental inflammatory pain induced by formalin in rats Xionggang Chen1, Tingting Wang2, Caizhu Lin1, Baihong Chen1 1Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China; 2Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China Received November 3, 2014; Accepted November 13, 2014; Epub December 15, 2014; Published December 30, 2014 Abstract: Circumstantial evidences suggest that dynorphins and their common precursor prodynorphin (PDYN) are involved in antinociception and neuroendocrine signaling. DREAM knockout mice had increased levels of PDYN and dynorphin expression, and reduced sensitivity to painful stimuli. However, some data support the notion that the up-regulation of spinal dynorphin expression is a common critical feature in neuropathic pain. It is not clear whether the production of dynorphin A can be increased when more PDYN is present. In this study we investigated the changes in pain behaviors, spinal PDYN mRNA expression and dynorphin A production on formalin-induced pain in rats receiving the pretreatment of adenoviral delivery of PDYN. Our results showed that the adenoviral transfer of PDYN gene was sufficient to reduce pain behaviors resulting from formalin injection, and the antinociceptive effect after receiving the pretreatment of adenoviral delivery of PDYN was mediated at the level of the spinal cord via KOR. Keywords: Adenoviral delivery, prodynorphin, dynorphin A, formalin, hyperalgesia, spinal dorsal horn Introduction The endogenous kappa-opioidergic system also participates in facilitation of spinal nociceptive It is currently accepted that the endogenous transmission [1, 13]. Several experimental kappa-opioidergic system plays an important models of chronic pain states show that a sig- role in the endogenous pain control system nificant upregulation of spinal dynorphin A and [1-4]. The endogenous ligands for kappa-opioid its precursor peptide, PDYN, is a common con- receptor (KOR) consist of prodynorphin (PDYN), sequence of nerve injury [14]. Previous obser- dynorphin A, dynorphin B, α-neo-endorphin and vations showed that the mechanism of signifi- big dynorphin [5], whereas PDYN is the precur- cant increase of PDYN expression in peripheral sor of dynorphins [6-8]. Actions of these pep- neuropathy was proposed to explain the para- tides are preferentially mediated through KOR dox of dynorphin actions [15]. Otherwise, a and are critical for regulation of nociceptive study with PDYN knock-out mice that up-regu- transmission [9, 10]. Otherwise, the endoge- lated spinal dynorphin was required for the nous kappa-opioidergic system also includes maintenance of persistent neuropathic pain downstream regulatory element antagonistic [16]. Recent findings implicate a direct excitato- modulator (DREAM) which inhibits transcription ry action of dynorphin A at bradykinin receptors of the PDYN gene [11, 12]. In DREAM knockout and NMDA receptors to promote hyperalgesia mice, there was increased expression of PDYN in nerve injured rats, and its upregulation may mRNA, but endogenous dynorphin increases promote nociceptive input due to injury [17-22]. might be limited to within physiological ranges All these data support the notion that the up- [6]. Therefore, the expression of endogenous regulation of spinal dynorphin expression is a PDYN, dynorphins may be under the tight con- common critical feature of expression of neuro- trol of DREAM in central nerve system. pathic pain [23]. Prodynorphin and inflammatory pain Previous study found that PDYN knockout mice LacZ-a (Microbix Biosystems, Inc.) were all almost didn’t produce dynorphin [24], indicat- digested with Hind III and EcoR I, and the ing that dynorphin cannot be produced without digested fragment s were re-collected from the PDYN. Dynorphin A is an endogenous opioid low melt agarose gel and fast ligated directly by neuropeptides derived from the PDYN gene [6, T4 DNA ligase. The reaction product was trans- 25]. However, we are not aware whether the formed into E. coli (DH5α), and the positive bac- production of dynorphin A is obviously increased terial colony was selected. The recombinant when more PDYN is present. To our knowledge, eukaryotic expression vector pDC316-PDYN the involvement of the pretreatment of PDYN in was identified by using restriction endonucle- inflammation-induced pain has not been previ- ases digestive reaction and DNA sequencing. ously investigated. Therefore in this study we The HEK 293 cells were cotransfected by the investigated the behavior change of rats receiv- shuttle plasmid of pDC316-PDYN and the skel- ing the pretreatment of adenoviral delivery of eton plasmid of pBHG which was adenoviruses PDYN, PDYN mRNA expression and dynorphin A type 5 with deletions in E1 and E3, and the production on Formalin-induced pain. We recombinant plasmid of Ad5-PDYN was ob- hypothesized that rats receiving the pretreat- tained. The expression of the transfected genes ment of adenoviral delivery of PDYN by the tail was evaluated by PCR and immunocytochemi- vein would show a modulatory antinociceptive cal staining. Virus was purified by double CsCl action and dynorphin A down-regulation in the centrifugation and subsequently dialyzed as spinal cord. described previously [29, 30]. Final yields as assessed by plaque assays on 293 cells were 12 Materials and methods approximately 1 × 10 plaque forming units (pfu)/ml [31]. Experimental animals Recombinant adenoviral injection Adult male SPF grade Sprague-Dawley rats Group Ad5 received respectively Ad5, with 1 × weighing between 250 and 300 g were housed 1011 pfu in 100 µl of PBS by the tail vein in day at a constant ambient temperature of 24°C ± 1 and day 7; group Ad5-PDYN received respec- 1°C, humidity of 40%-70% under a 12 h light/ tively Ad5-PDYN, with 1 × 1011 pfu in 100 µl of dark cycle and given food and water ad libitum. PBS by the tail vein in day 1 and day 7, while The rats were individually housed in plastic group C were injected with normal saline as cages with wood-chip bedding for at least 1 day control. Infusions of the recombinant adenovi- before surgery. All experimental procedures ruses into the tail vein of rats anesthetized with were approved by the Institutional Animal Care pentobarbital sodium (50 mg/kg, i.p.) were per- and Use Committee of First Affiliated Hospital formed as reported previously [32]. of Fujian Medical University and were in accor- dance with the guidelines for the use of labora- Experiment 1: The SD rats were randomly divid- tory animals [26]. All efforts were made to mini- ed into three groups (n = 10): group C, group mize animal suffering and to reduce the num- Ad5 and group Ad5-PDYN to assess whether ber of animals used. adenoviral delivery of prodynorphin inhibits experimental inflammatory pain induced by for- Recombinant adenoviral vectors malin in rats. Experiment 2: The SD rats were randomly divid- Construction of the recombinant adenoviruses ed into group Ad5 (n = 5) and group Ad5-PDYN was determined as described previously [27]. (n = 10) to determine whether the possible role Briefly, PDYN gene (GenBank accession num- of nor-binaltorphimine (nor-BNI) after receiving ber. NM 019374) primer sets (Sence: the pretreatment of adenoviral delivery of 5’-GACATGGCGTGGTCCAGGCTGATG-3’; Antisen- PDYN, and nor-BNI was dissolved in artificial ce: 5’-GTCTCAAACATCTAAATCT TCAGAATAGG- cerebrospinal fluid (aCSF) [33]. Rats in the con- TATTGGG-3’) were designed via PDYN cDNA trol group received aCSF infusions. We used was cloned by PCR technique, and then insert- the method of intrathecal injection to infuse ed into the cloning vector pUC57. The recon- Nor-BNI or aCSF [34]. Intrathecal injection (i.t.) structed plasmid with PDYN gene was detected was given in a volume of 5 µl through an inter- by the electrophoresis and the sequence analy- vertebral space at the level of the 5th or 6th sis [28]. Plasmid pUC57-PDYN and pDC316- lumbar vertebra using a microsyringe. 4878 Int J Clin Exp Med 2014;7(12):4877-4886 Prodynorphin and inflammatory pain Formalin-induced nociceptive behaviors and se: 5’-CACCCGCGAGTACAACCTTC-3’; antisense: pain intensity scoring 5’-CCCATACCCACCATCACACC-3’) were designed and synthesized by Invitrogen. PCR was per- On day 6 after second virus injection, the rats formed after reverse transcription at 42°C for were placed in a transparent glass trough and 60 min and initial denaturation at 95°C for 10 were allowed to get habituated for about 30 min. The temperature cycles (Roche, Bran- min. Then formalin (50 µl, 5%) was injected sub- chburg, NJ) were 94°C/30 s (denaturing), cutaneously (s.c.) into the large lateral footpad 58°C/30 s (annealing), and 72°C/30 s (exten- on the plantar surface of the right hind paw by sion). A total of 32 cycles and a final 5-min 100 µl microsyringe. Each rat was measured extension at 72°C were conducted. The PCR 12 times and Formalin-induced nociceptive amplified fragments, 239 bp for PDYN and 207 behaviors of rats were observed by trained indi- bp for β-actin, were separated on 3% ethidium viduals who were blinded to experimental con- bromide stained agarose gel (Invitrogen, ditions, and continued for the next 60 min [35]. Carlsbad, CA). The PCR gel image was captured Pain intensity scoring (PIS) of nociceptive be- and analyzed by a gel documentation system havior was recorded per 5 min by assigning (BIO-RAD, USA). The positive PCR bands were weights to the following categories: 0 = the purified and sequenced, and the resulting injected paw is no abnormalities; 1 = no or little sequences were identical to the targeted cDNA weight is placed on the injected paw (weight = sequences. Each experiment was run three 1); 2 = the injected paw is elevated and not in times and each sample was run in triplicate.
Recommended publications
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Receptor Types
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 3180-3184, April 1990 Pharmacology Chimeric opioid peptides: Tools for identifying opioid receptor types (dynorphin/dermorphin/deltorphin/monoclonal antibody/panning) Guo-xi XIE*t, ATSUSHI MIYAJIMA*, TAKASHI YOKOTA*, KEN-ICHI ARAI*, AND AVRAM GOLDSTEINt *Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304; and tDepartment of Pharmacology, Stanford University, Stanford, CA 94305 Contributed by Avram Goldstein, January 23, 1990 ABSTRACT We synthesized several chimeric peptides in was assumed that the C-terminal amide group ofdermorphin, which the N-terminal nine residues of dynorphin-32, a peptide deltorphins, and DSLET and the alcohol group of DAGO selective for the K opioid receptor, were replaced by opioid could be removed without affecting opioid binding. By anal- peptides selective for other opioid receptor types. Each chi- ogy to dyn-32, which binds selectively to K opioid sites, meric peptide retained the high affminty and type selectivity DAGO-DYN and dermorphin-DYN should bind selectively characteristic of its N-terminal sequence. The common C- to p.; deltorphins-DYN and DSLET-DYN should bind selec- terminal two-thirds of the chimeric peptides served as an tively to 8. mAbs 17.M and 39 should act as nonblocking epitope recognized by the same monoclonal antibody. When antibodies to all these peptides. bound to receptors on a cell surface or membrane preparation, In the present study, we have demonstrated that the these peptides could still bind specifically to the monoclonal chimeric peptides do maintain the high affinities and type antibody. These chimeric peptides should be useful for isolating selectivities of their N-terminal sequences.
    [Show full text]
  • Identification of Β-Endorphins in the Pituitary Gland and Blood Plasma Of
    271 Identification of -endorphins in the pituitary gland and blood plasma of the common carp (Cyprinus carpio) E H van den Burg, J R Metz, R J Arends, B Devreese1, I Vandenberghe1, J Van Beeumen1, S E Wendelaar Bonga and G Flik Department of Animal Physiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 1Laboratory of Protein Biochemistry and Protein Engineering, University of Gent, KL Ledeganckstraat 35, B9000 Gent, Belgium (Requests for offprints should be addressed to G Flik; Email: gertfl[email protected]) Abstract Carp -endorphin is posttranslationally modified by N-acetyl -endorphin(1–29) and these forms together N-terminal acetylation and C-terminal cleavage. These amounted to over 50% of total immunoreactivity. These processes determine the biological activity of the products were partially processed to N-acetyl - -endorphins. Forms of -endorphin were identified in endorphin(1–15) (30·8% of total immunoreactivity) and the pars intermedia and the pars distalis of the pituitary N-acetyl -endorphin(1–10) (3·1%) via two different gland of the common carp (Cyprinus carpio), as well as the cleavage pathways. The acetylated carp homologues of forms released in vitro and into the blood. After separation mammalian - and -endorphin were also found. and quantitation by high performance liquid chroma- N-acetyl -endorphin(1–15) and (1–29) and/or (1–33) tography (HPLC) coupled with radioimmunoassay, the were the major products to be released in vitro, and were -endorphin immunoreactive products were identified by the only acetylated -endorphins found in blood plasma, electrospray ionisation mass spectrometry and peptide although never together.
    [Show full text]
  • Biased Signaling by Endogenous Opioid Peptides
    Biased signaling by endogenous opioid peptides Ivone Gomesa, Salvador Sierrab,1, Lindsay Lueptowc,1, Achla Guptaa,1, Shawn Goutyd, Elyssa B. Margolise, Brian M. Coxd, and Lakshmi A. Devia,2 aDepartment of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bDepartment of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA 23298; cSemel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095; dDepartment of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814; and eDepartment of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94143 Edited by Susan G. Amara, National Institutes of Health, Bethesda, MD, and approved April 14, 2020 (received for review January 20, 2020) Opioids, such as morphine and fentanyl, are widely used for the possibility that endogenous opioid peptides could vary in this treatment of severe pain; however, prolonged treatment with manner as well (13). these drugs leads to the development of tolerance and can lead to For opioid receptors, studies showed that mice lacking opioid use disorder. The “Opioid Epidemic” has generated a drive β-arrestin2 exhibited enhanced and prolonged morphine-mediated for a deeper understanding of the fundamental signaling mecha- antinociception, and a reduction in side-effects, such as devel- nisms of opioid receptors. It is generally thought that the three opment of tolerance and acute constipation (15, 16). This led to types of opioid receptors (μ, δ, κ) are activated by endogenous studies examining whether μOR agonists exhibit biased signaling peptides derived from three different precursors: Proopiomelano- (17–20), and to the identification of agonists that preferentially cortin, proenkephalin, and prodynorphin.
    [Show full text]
  • Opioid Peptides 49 Ryszard Przewlocki
    Opioid Peptides 49 Ryszard Przewlocki Abbreviations ACTH Adrenocorticotropic hormone CCK Cholecystokinin CPA Conditioned place aversion CPP Conditioned place preference CRE cAMP response element CREB cAMP response element binding CRF Corticotrophin-releasing factor CSF Cerebrospinal fluid CTAP D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (m-opioid receptor antagonist) DA Dopamine DOP d-opioid peptide EOPs Endogenous opioid peptides ERK Extracellular signal-regulated kinase FSH Follicle-stimulating hormone GnRH Gonadotrophin-releasing hormone HPA axis Hypothalamo-pituitary-adrenal axis KO Knockout KOP k-opioid peptide LH Luteinizing hormone MAPK Mitogen-activated protein kinase MOP m-opioid peptide NOP Nociceptin opioid peptide NTS Nucleus tractus solitarii PAG Periaqueductal gray R. Przewlocki Department of Molecular Neuropharmacology, Institute of Pharmacology, PAS, Krakow, Poland Department of Neurobiology and Neuropsychology, Jagiellonian University, Krakow, Poland e-mail: [email protected] D.W. Pfaff (ed.), Neuroscience in the 21st Century, 1525 DOI 10.1007/978-1-4614-1997-6_54, # Springer Science+Business Media, LLC 2013 1526 R. Przewlocki PDYN Prodynorphin PENK Proenkephalin PNOC Pronociceptin POMC Proopiomelanocortin PTSD Posttraumatic stress disorder PVN Paraventricular nucleus SIA Stress-induced analgesia VTA Ventral tegmental area Brief History of Opioid Peptides and Their Receptors Man has used opium extract from poppy seeds for centuries for both pain relief and recreation. At the beginning of the nineteenth century, Serturmer first isolated the active ingredient of opium and named it morphine after Morpheus, the Greek god of dreams. Fifty years later, morphine was introduced for the treatment of postoper- ative and chronic pain. Like opium, however, morphine was found to be an addictive drug.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Mechanism and Site of Action of Big Dynorphin on Asic1a
    bioRxiv preprint doi: https://doi.org/10.1101/816264; this version posted January 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mechanism and site of action of big dynorphin on ASIC1a Borg, C.B.1#, Braun, N.1#, Heusser, S.A.1, Bay, Y.1, Weis, D.1, Galleano, I.1, Lund, C.1, Tian, W.2, Haugaard-Kedström, L.M.1, Bennett, E.P.2, Lynagh, T.1, Strømgaard, K.1, Andersen, J.3, Pless, S.A.1* 1Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark 2Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark 3Vipergen ApS, Gammel Kongevej 23A, 1610 Copenhagen, Denmark # These authors contributed equally * Correspondence: Stephan A. Pless ([email protected]) Center for Biopharmaceuticals, Department of Drug Design and Pharmacology University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark 1 bioRxiv preprint doi: https://doi.org/10.1101/816264; this version posted January 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs.
    [Show full text]
  • The Role of Protein Convertases in Bigdynorphin and Dynorphin a Metabolic Pathway
    Université de Montréal The Role of Protein Convertases in Bigdynorphin and Dynorphin A Metabolic Pathway par ALBERTO RUIZ ORDUNA Département de biomédecine vétérinaire Faculté de médecine vétérinaire Mémoire présenté à la Faculté de médecine vétérinaire en vue de l’obtention du grade de maître ès sciences (M.Sc.) en sciences vétérinaires option pharmacologie Décembre, 2015 © Alberto Ruiz Orduna, 2015 Résumé Les dynorphines sont des neuropeptides importants avec un rôle central dans la nociception et l’atténuation de la douleur. De nombreux mécanismes régulent les concentrations de dynorphine endogènes, y compris la protéolyse. Les Proprotéines convertases (PC) sont largement exprimées dans le système nerveux central et clivent spécifiquement le C-terminale de couple acides aminés basiques, ou un résidu basique unique. Le contrôle protéolytique des concentrations endogènes de Big Dynorphine (BDyn) et dynorphine A (Dyn A) a un effet important sur la perception de la douleur et le rôle de PC reste à être déterminée. L'objectif de cette étude était de décrypter le rôle de PC1 et PC2 dans le contrôle protéolytique de BDyn et Dyn A avec l'aide de fractions cellulaires de la moelle épinière de type sauvage (WT), PC1 -/+ et PC2 -/+ de souris et par la spectrométrie de masse. Nos résultats démontrent clairement que PC1 et PC2 sont impliquées dans la protéolyse de BDyn et Dyn A avec un rôle plus significatif pour PC1. Le traitement en C-terminal de BDyn génère des fragments peptidiques spécifiques incluant dynorphine 1-19, dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7 et Dyn A génère les fragments dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7.
    [Show full text]
  • Episodic Ethanol Exposure in Adolescent Rats Causes Residual Alterations in Endogenous Opioid Peptides
    ORIGINAL RESEARCH published: 10 September 2018 doi: 10.3389/fpsyt.2018.00425 Episodic Ethanol Exposure in Adolescent Rats Causes Residual Alterations in Endogenous Opioid Peptides Linnea Granholm, Lova Segerström and Ingrid Nylander* Department of Pharmaceutical Bioscience, Neuropharmacology, Addiction and Behaviour, Uppsala University, Uppsala, Sweden Adolescent binge drinking is associated with an increased risk of substance use disorder, but how ethanol affects the central levels of endogenous opioid peptides is still not thoroughly investigated. The aim of this study was to examine the effect of repeated episodic ethanol exposure during adolescence on the tissue levels of three different endogenous opioid peptides in rats. Outbred Wistar rats received orogastric (i.e., gavage) ethanol for three consecutive days per week between 4 and 9 weeks of age. At 2 h and 3 weeks, respectively, after the last exposure, beta-endorphin, dynorphin B and Met-enkephalin-Arg6Phe7 (MEAP) were analyzed with radioimmunoassay. Beta- endorphin levels were low in the nucleus accumbens during ethanol intoxication. Edited by: Lawrence Toll, Remaining effects of adolescent ethanol exposure were found especially for MEAP, with Florida Atlantic University, low levels in the amygdala, and high in the substantia nigra and ventral tegmental area United States three weeks after the last exposure. In the hypothalamus and pituitary, the effects of Reviewed by: Patrizia Porcu, ethanol on beta-endorphin were dependent on time from the last exposure. An interaction Istituto di Neuroscienze (IN), Italy effect was also found in the accumbal levels of MEAP and nigral dynorphin B. These Akihiko Ozawa, results demonstrate that repeated episodic exposure to ethanol during adolescence Florida Atlantic University, United States affected opioid peptide levels in regions involved in reward and reinforcement as well as *Correspondence: stress response.
    [Show full text]
  • Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
    Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Dynorphinergic Mechanism Mediating Endomorphin-2-Induced Anti
    JPET Fast Forward. Published on October 13, 2003 as DOI: 10.1124/jpet.103.056242 JPET FastThis articleForward. has not Published been copyedited on and October formatted. 13,The final2003 version as DOI:10.1124/jpet.103.056242 may differ from this version. Dynorphinergic mechanism mediating endomorphin-2-induced anti-analgesia in the mouse spinal cord Hsiang-En Wu, Han-Sen Sun, Moses Darpolar, Randy J. Leitermann, John P. Kampine and Leon F. Tseng* Department of Anesthesiology, Medical College of Wisconsin, Downloaded from Milwaukee, WI 53226, USA jpet.aspetjournals.org at ASPET Journals on September 26, 2021 Copyright 2003 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on October 13, 2003 as DOI: 10.1124/jpet.103.056242 This article has not been copyedited and formatted. The final version may differ from this version. a) Running title: Endomorphin-2-induced anti-analgesia b) Corresponding author: Leon F. Tseng, Ph.D. Department of Anesthesiology Medical College of Wisconsin Medical Education Building, Room M4308 8701 Watertown Plank Road Downloaded from Milwaukee, WI 53226 Tel: (414) 456-5686, jpet.aspetjournals.org Fax: (414) 456-6507 E-mail: [email protected] c) The number of text pages: 31 at ASPET Journals on September 26, 2021 The number of figures: 7 The number of table: 1 The number of references: 38 The number of words in Abstract: 259 The number of words in Introduction: 462 The number of words in Discussion: 1314 d) Abbreviations: Dyn, Dynorphin A(1-17); EM-1, endomorphin-1; EM-2, endomorphin-2; CCK, cholecystokinin; DAMGO, [D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin; NTI, naltrindole; nor-BNI, nor-binaltorphimine; NRS, normal rabbit serum; TF, Tail-flick response; %MPE, percent maximum possible effect 2 JPET Fast Forward.
    [Show full text]
  • Distribution of Prodynorphin Mrna and Its Interaction with the NPY System in the Mouse Brain Neuropeptides 40 (2): 115-123, 2006
    Lin et al.: Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain Neuropeptides 40 (2): 115-123, 2006 Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain Shu Lina, Dana Boeya, Nicola Leea, Christoph Schwarzerb, Amanda Sainsburya, Herbert Herzoga, a Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australiab Department of Pharmacology, Medical University of Innsbruck, Peter- Mayr-Strasse 1a, 6020 Innsbruck, Austria Abstract Using radioactive in situ hybridisation, the distribution of prodynorphin mRNA in the brains of C57Bl/6 mice was systemically investigated, and double-labelling in situ hybridisation was used to determine the extent to which neuropeptide Y (NPY) and prodynorphin mRNAs were co-expressed. Our results demonstrate that prodynorphin mRNA expression in the mouse brain is localised at specific subregions of the olfactory bulb, cortex, hippocampus, amygdala, basal ganglia, thalamus, hypothalamus, mesencephalon and myelencephalon. Among the regions displaying the most intense labelling were the olfactory tubercle, lateral septum (LS), caudate putamen (Cpu), central amygdaloid nucleus (Ce), paraventricular hypothalamic nucleus (PVN), supraoptic nucleus (SO), lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMH), lateral reticular nucleus (LRt) and solitary tract nucleus (NTS). In the arcuate nucleus of the hypothalamus (Arc), double- labelling in situ hybridisation revealed that prodynorphin expressing neurons also contained NPY mRNA, with a co-localisation rate of approximately 88% in the lateral part of the Arc, and 79% in the dorsal part of the Arc, respectively, suggesting potential overlapping functions of these two neurotransmitters in feeding type behaviour.
    [Show full text]