Based on Mitochondrial Genomes

Total Page:16

File Type:pdf, Size:1020Kb

Based on Mitochondrial Genomes See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/236260264 Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes ARTICLE in SYSTEMATIC ENTOMOLOGY · JANUARY 2013 Impact Factor: 2.55 · DOI: 10.1111/j.1365-3113.2012.00660.x CITATIONS DOWNLOADS VIEWS 8 74 130 9 AUTHORS, INCLUDING: Qiang Xie Jianfu Zhou Nankai University Dartmouth College 18 PUBLICATIONS 285 CITATIONS 6 PUBLICATIONS 36 CITATIONS SEE PROFILE SEE PROFILE Xiaoguang Liu Wenjun Bu Nankai Univrsity Nankai University 62 PUBLICATIONS 118 CITATIONS 44 PUBLICATIONS 340 CITATIONS SEE PROFILE SEE PROFILE Available from: Kai Dang Retrieved on: 17 August 2015 Systematic Entomology (2013), 38, 233–245 DOI: 10.1111/j.1365-3113.2012.00660.x Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes ∗ ∗ ∗ YING CUI1 , QIANG XIE1 ,JIMENGHUA1 , KAI DANG1, JIANFU ZHOU2, XIAOGUANG LIU2, GANG WANG2,XINYU1 and W E N J U N B U1 1Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China and 2College of Information Technical Science, Nankai University, Tianjin, China Abstract. Hemiptera is the largest order in Paraneoptera and the fifth largest in Insecta. Disputes about hemipteran phylogeny have concerned the monophyly of Auchenorrhyncha and relationships between the suborders Fulgoromorpha, Cicado- morpha, Coleorrhyncha and Heteroptera. In a phylogenomic study of Hemiptera, we add two new mitochondrial genomes of Peloridiidae (Coleorrhyncha) to those reported in GenBank, to complete the taxon sampling of all suborders. We used two types of data – amino acid sequences and nucleotides of various combinations between protein coding genes, tRNAs and rRNAs – to infer the phylogeny of Hemiptera. In total 27 taxa of Paraneoptera were sampled, 24 of them being hemipterans. Bayesian infer- ence, maximum likelihood and maximum parsimony analyses were employed. The relationship of Cicadomorpha + Heteroptera is always stable in the results with dif- ferent combinations between data types and phylogenetic methods, but our results challenge the monophyly of ‘Homoptera’ and Auchenorrhyncha. In evaluating the rel- ative contribution of each gene, the phylograms generated by single genes CO1, ND1, ND2, ND4 and ND5, respectively, closely matched the tree yielded by the combined datasets. In light of the taxon-sampling sensitivity of trees based on mitochondrial genomes, the results need to be tested with further data from nuclear genes. Introduction accepted since the 1960s to the present (Hennig, 1969; Carver et al., 1991; Kristensen, 1991; Yoshizawa & Saigusa, 2001). Hemiptera (true bugs) and Homoptera (planthoppers, leafhop- In this study, Hemiptera is used to mean Hemiptera (s.l.). pers, treehoppers, cicadas, spittlebugs, aphids, psyllids, scales, Different views of hemipteran phylogeny are summarized whiteflies, etc.) were established originally by Linnaeus (1758) in Fig. 1. Traditionally, no matter whether ‘Homoptera’ is according to features of the wing. Although merged into Ryn- regarded as a distinct order or as a suborder of Hemiptera, it gota in 1775 by Fabricius (modified to Rhynchota by Burmeis- consists of Sternorrhyncha and Auchenorrhyncha. Sternorrhyn- ter in 1835) based on the mouthpart structure, they were still cha was supported as a sister group to all the other hemipterans, treated as two separate orders until the 1930s (e.g. Brues & and named Euhemiptera (Zrzavy,´ 1990), by numerous phy- Melander, 1932), except by Latreille (1810) who recognized logenetic studies based on morphological evidence (Hennig, Heteroptera and ‘Homoptera’ as two sections of his order 1969, 1981; Kristensen, 1975, 1991; Schuh, 1979; Popov, Hemiptera (s.l.). The concept of Hemiptera (s.l.)hasbeen 1981; Minet & Bourgoin, 1986; Wootton & Betts, 1986; Correspondence: Wenjun Bu, Institute of Entomology, College of Zrzavy,´ 1990, 1992) and molecular evidence (Wheeler et al., Life Sciences, Nankai University, Weijin Road No. 94, Tianjin 300071, 1993; Campbell et al., 1994, 1995; Sorensen et al., 1995; China. E-mail: [email protected] von Dohlen & Moran, 1995; Ouvrard et al., 2000; Cryan & Urban, 2012). However, Homoptera has been argued to ∗These authors contributed equally to this work. be monophyletic based on evidence from the mitochondrial © 2012 The Royal Entomological Society 233 234 Y. Cui et al. genomes (mitogenomes), and thus the controversy over the characteristics (Shcherbakov, 1988; Zrzavy,´ 1990, 1992; Popov monophyly of Homoptera was revived (Song et al., 2010). & Shcherbakov, 1991, 1996; D’Urso, 1993; Grimaldi & Engel, Auchenorrhyncha traditionally has been divided into Fulgo- 2005). Although Shcherbakov (1988) regarded the extant romorpha and Cicadomorpha (Grimaldi & Engel, 2005). As to cicadomorphs and heteropterans as descendants of a common the monophyly of Auchenorrhyncha, both the molecular evi- ancestor, Popov & Shcherbakov (1991, 1996) argued that dence and the morphological evidence has been controversial Coleorrhyncha and Heteroptera did not have an immediate (Fig. 1). In fact, the nonmonophyletic view of Auchenorrhyn- common ancestor and were descended independently from cha includes different opinions. According to one hypothe- separate lineages. Hence, the phylogenetic relationships among sis, Fulgoromorpha rather than Cicadomorpha is more closely the higher-level hemipteran lineages remain unclear (Fig. 1). related to Heteroptera (Goodchild, 1966; Bourgoin, 1988, Mitogenomes have been used successfully to reconstruct 1993; Campbell et al., 1994; von Dohlen & Moran, 1995) or the phylogenetic relationships within some orders of Insecta Heteropterodea (Campbell et al., 1995; Sorensen et al., 1995). (Cameron et al., 2007, 2008; Fenn et al., 2008; Hua et al., In an alternative hypothesis, Cicadomorpha is placed as a sis- 2008, 2009; Wei et al., 2010). Until now, the mitogenomes ter group to Heteropterodea based on 18S rDNA (Ouvrard of four of the five hemipteran suborders – Sternorrhyncha, et al., 2000; Xie et al., 2008). Hamilton (1981) proposed that Cicadomorpha, Fulgoromorpha and Heteroptera – have been Cicadomorpha was sister group to Sternorrhyncha. reported in GenBank, which leaves the corresponding data for Coleorrhyncha, proposed originally by Myers & China Coleorrhyncha blank. Restricted distribution, small individual (1929), are small bugs with a crptic lifestyle. They possess size and secluded lifestyle may all make it hard to provide a mixture of cicadomorphan and bug-like characters (Bechly complete mitogenomic sequences for Coleorrhyncha. How- & Szwedo, 2007), and represent a separate suborder within ever, without the mitogenomic sequences of Coleorrhyncha, Hemiptera. This suborder includes a single extant family, phylogenomic sampling of Hemiptera are incomplete. Here we Peloridiidae, which is distributed now only in Patagonia included two mitogenomes of Coleorrhyncha and reconstructed and the Australian continent (Burckhardt et al., 2011). Its the higher-level phylogenomic relationships of Hemiptera with complete subordinal sampling for the first time. phylogenetic position within Hemiptera has long fascinated hemipterists. Peloridiids were placed first in Heteroptera (Breddin, 1897), but transferred to a suborder of their own Materials and methods (China, 1924) or included in the ‘Homoptera’ (Myers & China, 1929; China, 1962; Evans, 1963). Peloridiidae and Heteroptera Taxon sampling were treated as sister groups by Schlee (1969) but Cobben (1978) considered Schlee’s synapomorphies as superficial. Twenty-seven taxa were sampled in this study. Twenty- Although the close relationship between Peloridiidae and four of these were ingroups, which included all five suborders Heteroptera has been supported consistently by nuclear rDNAs of Hemiptera. Among them, the mitogenomes of Xenophyes (Campbell et al., 1995; Sorensen et al., 1995; Ouvrard et al., cascus Bergroth and Hackeriella veitchi (Hacker) are reported 2000; Xie et al., 2008; Cryan & Urban, 2012), controversies here for the first time. The remaining outgroups were sampled remain from the view of morphological and paleontological from Phthiraptera and Thysanoptera (Table 1). Fig. 1. The summarized phylogenetic relationships among the higher-level hemipteran lineages. © 2012 The Royal Entomological Society, Systematic Entomology, 38, 233–245 Phylogenomics of Hemiptera 235 ◦ Table 1. Hemipteran taxon sampling and the accession numbers of initial denaturation at 94 C, 32 cycles of 20 s denaturation at ◦ ◦ the corresponding mitogenomes. 94 C, 1 min annealing at 47–60 C and 1–10 mins elongation ◦ at 72 C depending on the size of products, and a final Taxa Accession number ◦ elongation for 10 min at 72 C. The primers used in this study Phthiraptera — are listed in File S1 and the specific primers named with the Bothriometopus macrocnemis NC_009983 first three letters ‘Xen’ were used for amplifying the sequences Campanulotes bidentatus compar NC_007884 of Xenophyes cascus and ‘Hac’ for Hackeriella veitchi. Thysanoptera — The PCR products were electrophoresed in 0.7–1% agarose Thrips imaginis NC_004371 gel and then purified. All the products were sequenced directly Hemiptera — Sternorrhyncha — in double directions by primer walking. Those fragments which Aleurochiton aceris NC_006160 failed direct sequencing were cloned into TA-cloning vector Aleurodicus dugesii NC_005939 pMD-18T (TaKaRa) and transformed into competent E. coli Acyrthosiphon pisum NC_011594 DH5α. Putative clones containing the PCR fragments
Recommended publications
  • Fossil Record of Stem Groups Employed In
    www.nature.com/scientificreports OPEN Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Received: 07 April 2016 Accepted: 16 November 2016 Hexapoda) Published: 13 December 2016 Yan-hui Wang1,2,*, Michael S. Engel3,*, José A. Rafael4,*, Hao-yang Wu2, Dávid Rédei2, Qiang Xie2, Gang Wang1, Xiao-guang Liu1 & Wen-jun Bu2 Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. Over half of all described living species are insects, and they dominate all terrestrial ecosystems1.
    [Show full text]
  • Hemiptera: first Record for an Australian Lophopid (Hemiptera, Lophopidae)
    Australian Journal of Entomology (2007) 46, 129–132 Historical use of substrate-borne acoustic production within the Hemiptera: first record for an Australian Lophopid (Hemiptera, Lophopidae) Adeline Soulier-Perkins,1* Jérôme Sueur2 and Hannelore Hoch3 1Muséum National d’Histoire Naturelle, Département Systématique et Évolution, USM 601 MNHN & UMR 5202 CNRS, Case Postale 50, 45, Rue Buffon, F-75005 Paris, France. 2NAMC-CNRS UMR 8620, Bât. 446, Université Paris XI, F-91405 Orsay Cedex, France. 3Museum für Naturkunde, Institut für Systematische Zoologie, Humboldt-Universität zu Berlin Invalidenstr. 43, D- 10115 Berlin, Germany. Abstract Here the first record of communication through substrate-borne vibrations for the Lophopidae family is reported. The signals from Magia subocellata that the authors recorded were short calls with a decreasing frequency modulation. Acoustic vibrations have been observed for other families within the Hemiptera and a scenario concerning the historical use of vibrational communication within the Hemiptera is tested using a phylogenetic inference. The most parsimonious hypothesis suggests that substrate-borne communication is ancestral for the hemipteran order and highlights the groups for which future acoustic research should be undertaken. Key words Cicadomorpha, Coleorrhyncha, evolutionary scenario, Heteroptera, Sternorrhyncha, substrate vibration. INTRODUCTION Lophopidae migrating into America via the Bering land bridge. Some other ancestors of the extant groups moved onto Many animals have been recently recognised for their ability newly emerging land in the Pacific, expanding their distribu- to communicate through substrate-borne vibrations (Hill tion as far east as the Samoan Islands, and as far south as 2001). While elephants produce vibrations transmitted by the Australia (Soulier-Perkins 2000).
    [Show full text]
  • Order 4 Hemiptera Derivation: (Gk. Hemi=Half; Petron=A Wing
    Order 4 Hemiptera Derivation: (Gk. Hemi=half; petron=a wing) Common names: (Bugs, aphids, hoppers, etc.) Metamorphosis: Incomplete (Paurometabolous) - Distribution: Worldwide Number of families: 134 Bugs, which comprise about 8 % of all insect species, are the largest and most successful of the Exopterygote orders. They range from minute, wingless, scale insects, hardly resembling insects at all, to giant water bugs with raptorial front legs capable of catching fish and frogs. Almost every type of terrestrial and freshwater habitat has a particular and characteristic bug fauna, and ocean striders of genus Halobates (Gerridae) can found on the sea, hundreds of miles from the land. In the past, the order was split into two large suborders, the Heteroptera (the true land and water bugs) and the Homoptera (the aphids, scale insect, hoppers, plant lice, mealy bugs, and related species), on the base of wing characteristics. Two pairs of wings are usually present and in heteropterans, the basal part of the front wing is toughened, leaving a membranous region on the tip. In homopterans, the front wings and hind wings may be memberanous, or the front wings may be entirely toughened. Modern classification recognize four distinct suborders: the Coleorrhyncha (beetle bugs, a single family of bugs found in the southern hemisphere); Heteroptera (73 families of true bugs); Auchenorrhyncha (31 families of the plantoppers, leafhoppers, treehoppers, froghoppers, lantern bugs and cicadas); Sternorrhyncha (29 families of whiteflies, aphids, conifer woolly aphids, scale insects, mealy bugs, phylloxerans, jumping plant lice). All Auchenorrhyncha, Coleorrhyncha and Sternorrhyncha are herbivorous, feeding on the sap or cell contents of vascular plants.
    [Show full text]
  • A New Family of Coreoidea from the Lower Cretaceous Lebanese Amber (Hemiptera: Pentatomomorpha)
    P O L I S H JOUR NAL OF ENTOMOLO G Y POLSKIE PISMO ENTOMOL OGICZ N E VOL. 80: 627-644 Gdynia 31 December 2011 DOI: 10.2478/v10200-011-0049-5 A new family of Coreoidea from the Lower Cretaceous Lebanese Amber (Hemiptera: Pentatomomorpha) DANY AZAR1, ANDRÉ NEL2, MICHAEL S. ENGEL3, 4, ROMAIN GARROUSTE2, ARMAND MATOCQ2 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, PO box 26110217, Fanar – Matn, Lebanon, e-mail: [email protected]; 2CNRS UMR 7205, CP 50, Entomologie, Muséum National d'Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France, e-mails: [email protected], [email protected], [email protected]; 3Division of Entomology (Paleoentomology), Natural History Museum, University of Kansas, Lawrence, KS 66049-2811, USA, e-mail: [email protected]; 4Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, KS 66049-2811, USA ABSTRACT. A new genus and species, Yuripopovina magnifica, belonging to a new coreoid family, Yuripopovinidae (Hemiptera: Pentatomomorpha), is described and illustrated from the Lower Cretaceous amber of Lebanon. The species represents the first definitive Mesozoic record for the Coreoidea. A cladistic analysis of Coreoidea, including the new family, is undertaken. KEY WORDS: Pentatomomorpha, Coreoidea, Yuripopovinidae, fam. n., gen. n., sp. n., Lebanon, phylogeny. INTRODUCTION The Pentatomomorpha with its 14 000 known living species (WEIRAUCH & SCHUH 2011) is the second largest of the seven heteropteran infraorders (SCHAEFER 1993, ŠTYS & KERZHNER 1975) (Enicocephalomorpha, Dipsocoromorpha, Gerromorpha, Nepomorpha, Leptodomorpha, Cimicomorpha, and Pentatomorpha). Most authors recognize five superfamilies within Pentatomomorpha, but there remains controversy regarding the 628 Polish Journal of Entomology 80 (4) composition of these superfamilies (SCHAEFER 1993, ŠTYS 1961).
    [Show full text]
  • The Coleorrhyncha (Insecta: Hemiptera) of the European Jurassic, with a Description of a New Genus from the Toarcian of Luxembourg
    Volumina Jurassica, 2011, iX: 3–20 The Coleorrhyncha (Insecta: Hemiptera) of the European Jurassic, with a description of a new genus from the Toarcian of Luxembourg Jacek SZWEDO1 Key words: Indutionomarus treveriorum gen. et sp. nov., Mesocimex anglicus (Yu. Popov, Dolling et Whalley) comb. nov., Toarcian ­Oceanic Anoxic Event, taxonomy, phylogeny, palaeoclimate, palaeoenvironment. Abstract. The fossil record of the Coleorrhyncha goes back to the Upper Permian. In recent faunas only members of the Peloridiidae are present, restricted in distribution to the Southern Hemisphere. These insects were more diversified in the past, and though their fossil re- cord in the Jurassic is restricted to the Northern Hemisphere, it comprises the families Progonocimicidae and Karabasiidae. The subfamily Progonocimicinae, present in the Jurassic strata of Europe and Asia is a declining lineage. The subfamily Cicadocorinae originated at the Triassic/Jurassic boundary and became dominant during Jurassic times. A review of Coleorrhyncha from European fossil sites is given, with taxonomic and phylogenetic problems highlighted. Their occurrence is linked to a very humid and warm climate, which is in agreement with independent data indicating greenhouse conditions in the atmospheric system and anoxia in the oceans at that time (Toarcian-Oceanic Anoxic Event – T-OAE) and coeval greenhouse climate on land. A new genus and species of the Progonocimicinae – Indutionomarus treveriorum gen. et sp. nov. is described, based on a specimen from the Lower Toarcian of Bascharage, Luxembourg, Western Europe. It is the first record of theColeorrhyncha from this locality. The morphological features of the new genus in respect to other Progonocimicidae, and its phylogenetic importance, are discussed.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Um Método De Armazenamento Para Psocoptera (Insecta: Psocodea) Em Caixa De CD
    doi:10.12741/ebrasilis.v9i3.656 e-ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Distribuído através da Creative Commons Licence v4.0 (BY-NC-ND) Copyright © EntomoBrasilis Copyright © do(s) Autor(es) A Storage Method for ‘Psocoptera’ (Insecta: Psocodea) in “CD Box” Alberto Moreira Silva-Neto¹, Alfonso Neri García Aldrete², José Albertino Rafael¹ 1. Instituto Nacional de Pesquisas da Amazônia – INPA, CPEN – Programa de Pós-Graduação em Entomologia, e-mail: [email protected] (Corresponding author), [email protected]. 2. Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, e-mail: [email protected]. _____________________________________ EntomoBrasilis 9 (3): 220-223 (2016) Abstract. The use of a “CD box” adapted to the storage of slides, and other body parts of dissected psocopterans was proposed. Keywords: Bark-Lice; Book-lice; Entomological collection; Paraneoptera; Psocids. Um Método de Armazenamento para Psocoptera (Insecta: Psocodea) em Caixa de CD Resumo. O uso de uma caixa de CD adaptada para o armazenamento de lâminas e outras partes dissecadas do corpo de psocópteros foi proposto. Palavras-chave: Coleção entomológica; Paraneoptera; Piolhos de cascas de árvores; Piolho de livros; Psocídeos. _____________________________________ socoptera (psocids, booklice, barklice) is the paraphyletic wide and 143 mm long. The box is divided in the following parts: non-parasitic component of order Psocodea (Psocoptera “CD box” itself with a lower part (base), upper part (lid) that + Phthiraptera) (YOSHIZAWA & JOHNSON 2006). They range are movable between them and the “tray” (Tray or cradle CD) from 1 to 10 mm in length and are characterized by a large and internal and embedded in the base, which has a central crown mobile head, bulbous postclypeus, asymmetric mandibles, with teeth which serves to fix the CD.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Hemiptera, Prosorrhyncha) with Special Reference to the Pregenital Abdominal Structure1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Justification for the Aradimorpha as an infraorder of the suborder Heteroptera (Hemiptera, Prosorrhyncha) with Special Reference to the Pregenital Abdominal Structure1 M.H. SWEET Abstract: Aradomorpha SWEET 1996 is replaced with Aradimorpha because of homonymy with Arado- morpha CHAMPION 1899, a genus of Reduviidae. The Aradimorpha differ from the Pentatomomorpha s.s. and the Leptopodomorpha in having a plesiomorphic connexivum of dorsal epipleurites and ventral hy- popleurites rather than having the connexivum turned over so that the hypopleurites are dorsalized and the epipleurites folded into the abdomen. In most Aradimorpha, in both males and females, sterna 3 to 7 are free with intersegmental conjunctiva; terga 1-2 and 3 to 6 are united, but all epipleurites are free. In the Pentatomomorpha at least abdominal sterna 2 to 4 in females and sterna 2 to 5 in males are uni- ted or fused without conjunctiva. In some aradids the hypopleurites are united or fused with the sterna, but hypopleurite 2 is usually free. Sternum 2 is sometimes united to fused with sternum 1 and the meta- sternum. The abdominal spiracles in the Aradimorpha are ventral on the hypopleurites, although some- times very lateral in position on the hypopleurites, with the exception of the Chinamyersiini in which spiracles 4, 5 and 6 are dorsal on the epipleurites in Chinamyersia, and 5 and 6 dorsal in Gnostocoris, whi- le in the Tretocorini (Tretocoris and Kumaressa) spiracle 2 seems dorsal but is actually very lateral on the hypopleurite. In the Termitaphididae, epipleurites and hypopleurites are distinct, forming mobile lateral abdominal lobes.
    [Show full text]
  • Page 1 (A) (E) Fig. S1. Mouthpart Origin and Hemelytra of Hemipteran
    (a) (b) (d) (c) (e) Fig 61. Mouthpart origin and hemelytra of hemipteran insects. (a) Hypognathous mouthpart position (wax scale insect, Ceroplastes sp.). (b) Orthezia sp. (scale insect). (c) Orthognathous mouthpart position (cicada, Gaeana maculate). (d) Prognathous mouthpart position (assassin bug, Sirthenea flavipes). (e) Pentatomid bug, Catacanthus incarnatus showing hemelytron structure. Scale: for (a), 0.40 mm; for (b), 0.65 mm; for (c), 3.84 mm; for (d), 1.81 mm; for (e), 6.71 mm (for body of pentatomid bug) and 4.73 mm (for hemelytron). Sternorrhyncha Cicadomorpha Fulgoromorpha Coleorrhyncha Heteroptera PCG1 PCG2 Sternorrhyncha Cicadomorpha Fulgoromorpha Coleorrhyncha Heteroptera PCG3 RNA )LJ62. AliGROOVE analysis for codon positions of protein-coding genes (PCGs) and RNA genes. PCG1, the first codon position of PCGs. PCG2, the second codon position of PCGs. PCG3, the third codon position of PCGs. RNA, sequences of tRNA and rRNA genes. The mean similarity score between sequences is represented by a colored square, based on AliGROOVE scores from -1, indicating great difference in rates from the remainder of the data set, that is, heterogeneity (red coloring), to +1, indicating that ratesmatch all other comparisons (blue coloring). Bactericera sinica Sternorrhyncha Cicadomorpha Coleorrhyncha Fulgoromorpha Dipsocoromorpha Gerromorpha Enicocephalomorpha Nepomorpha Leptopodomorpha Cimicomorpha Heteroptera Pentatomomorpha Eusthenes cupreus FigS33K\ORJHQHWLFWUHHLQIHUUHGIURP3K\OR%D\HVDQDO\VLVRIWKH3&*51$GDWDVHWXQGHUWKe &$7*75PL[WXUHPRGHO9DOXHVDWQRGHVDUH%D\HVLDQ33V
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]
  • Hemiptera, Coleorrhyncha, Peloridiidae)
    An anomalous moss-bug from Southern Chile and notes on Pantinia darwini (Hemiptera, Coleorrhyncha, Peloridiidae) Autor(en): Burckhardt, Daniel / Cekalovic K., Tomas Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 75 (2002) Heft 1-2 PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-402817 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte
    [Show full text]