The Requirements of I/O OS Basics: I/O in a Picture

Total Page:16

File Type:pdf, Size:1020Kb

The Requirements of I/O OS Basics: I/O in a Picture The Requirements of I/O CS162 • So far in this course: Operating Systems and – We have learned how to manage CPU and memory Systems Programming Lecture 16 • What about I/O? – Without I/O, computers are useless (disembodied brains?) General I/O – But… thousands of devices, each slightly different » How can we standardize the interfaces to these devices? October 18th, 2017 – Devices unreliable: media failures and transmission errors Neeraja J. Yadwadkar » How can we make them reliable??? http://cs162.eecs.Berkeley.edu – Devices unpredictable and/or slow » How can we manage them if we don’t know what they will do or how they will perform? 10/18/17 CS162 © UCB Spring 2017 Lec 16.2 OS Basics: I/O In a Picture Threads Read / Address Spaces Windows Write wires Processes Files Sockets Processor OS Hardware Virtualization Core I/O Software Controllers Hardware ISA Memory interrupts Secondary Read / DMA transfer Write Main Secondary Storage Processor Protection Core Memory Storage (Disk) Boundary (DRAM) (SSD) OS Ctrlr Networks storage • I/O devices you recognize are supported by I/O Controllers • Processors accesses them by reading and writing IO registers as if they were memory Displays – Write commands and arguments, read status and results Inputs 10/18/17 CS162 © UCB Spring 2017 Lec 16.3 10/18/17 CS162 © UCB Spring 2017 Lec 16.4 Operational Parameters for I/O Kernel Device Structure • Data granularity: Byte vs. Block The System Call Interface – Some devices provide single byte at a time (e.g., keyboard) – Others provide whole blocks (e.g., disks, networks, etc.) Process Memory Device Filesystems Networking Management Management Control • Access pattern: Sequential vs. Random Concurrency, Files and dirs: Virtual TTYs and Connectivity – Some devices must be accessed sequentially (e.g., tape) multitasking memory the VFS device access File System – Others can be accessed “randomly” (e.g., disk, cd, etc.) Types Network » Fixed overhead to start transfers Architecture Subsystem Memory Device Dependent – Some devices require continual monitoring Manager Control Code Block IF drivers – Others generate interrupts when they need service Devices • Transfer Mechanism: Programmed IO and DMA 10/18/17 CS162 © UCB Spring 2017 Lec 16.5 10/18/17 CS162 © UCB Spring 2017 Lec 16.6 The Goal of the I/O Subsystem Want Standard Interfaces to Devices • Block Devices: e.g. disk drives, tape drives, DVD-ROM • Provide Uniform Interfaces, Despite Wide Range of Different – Access blocks of data Devices – Commands include open(), read(), write(), seek() – This code works on many different devices: – Raw I/O or file-system access FILE fd = fopen("/dev/something", "rw"); – Memory-mapped file access possible for (int i = 0; i < 10; i++) { • Character Devices: e.g. keyboards, mice, serial ports, some USB fprintf(fd, "Count %d\n", i); devices } – Single characters at a time close(fd); – Commands include get(), put() – Why? Because code that controls devices (“device driver”) – Libraries layered on top allow line editing implements standard interface • Network Devices: e.g. Ethernet, Wireless, Bluetooth • We will try to get a flavor for what is involved in actually – Different enough from block/character to have own interface controlling devices in rest of lecture – Unix and Windows include socket interface – Can only scratch surface! » Separates network protocol from network operation » Includes select() functionality – Usage: pipes, FIFOs, streams, queues, mailboxes 10/18/17 CS162 © UCB Spring 2017 Lec 16.7 10/18/17 CS162 © UCB Spring 2017 Lec 16.8 How Does User Deal with Timing? Chip-scale Features of 2015 x86 (Sky Lake) • Blocking Interface: “Wait” • Significant pieces: – When request data (e.g. read() system call), put process to sleep until – Four OOO cores with deeper buffers data is ready » New Intel MPX (Memory Protection Extensions) – When write data (e.g. write() system call), put process to sleep until » New Intel SGX (Software Guard Extensions) device is ready for data » Issue up to 6 µ-ops/cycle • Non-blocking Interface: “Don’t Wait” – Integrated GPU, System Agent (Mem, Fast I/O) – Large shared L3 cache with on-chip ring bus – Returns quickly from read or write request with count of bytes successfully transferred » 2 MB/core instead of 1.5 MB/core » High-BW access to L3 Cache – Read may return nothing, write may write nothing • Integrated I/O • Asynchronous Interface: “Tell Me Later” – Integrated memory controller (IMC) – When request data, take pointer to user’s buffer, return immediately; » Two independent channels of DDR3L/DDR4 DRAM later kernel fills buffer and notifies user – High-speed PCI-Express (for Graphics cards) – When send data, take pointer to user’s buffer, return immediately; later kernel takes data and notifies user – Direct Media Interface (DMI) Connection to PCH (Platform Control Hub) 10/18/17 CS162 © UCB Spring 2017 Lec 16.9 10/18/17 CS162 © UCB Spring 2017 Lec 16.10 Sky Lake I/O: PCH Modern I/O Systems • Platform Controller Hub – Connected to processor with proprietary bus » Direct Media Interface • Types of I/O on PCH: – USB, Ethernet – Thunderbolt 3 network – Audio, BIOS support – More PCI Express (lower speed than on Processor) – SATA (for Disks) Sky Lake System Configuration 10/18/17 CS162 © UCB Spring 2017 Lec 16.11 10/18/17 CS162 © UCB Spring 2017 Lec 16.12 Example Device-Transfer Rates in Mb/s Example: PCI Architecture (Sun Enterprise 6000) Memory RAM CPU Bus Host Bridge PCI #0 ISA Bridge PCI Bridge PCI #1 ISA PCI Slots USB SATA Controller Scanner Controller Controller Legacy Root Devices Hub Hard DVD Disk 10m ROM Hub Webcam • Device Rates vary over 12 orders of magnitude !!! – System better be able to handle this wide range Mouse Keyboard – Better not have high overhead/byte for fast devices! – Better not waste time waiting for slow devices 10/18/17 CS162 © UCB Spring 2017 Lec 16.13 10/18/17 CS162 © UCB Spring 2017 Lec 16.14 How does the processor actually talk to the device? Example: Memory-Mapped Display Controller Processor Memory Bus Regular Memory • Memory-Mapped: Bus Bus CPU 0x80020000 Graphics Adaptor Adaptor Device – Hardware maps control registers and display Address + Controller memory into physical address space Command Other Devices Data Bus Hardware Queue or Buses » Addresses set by HW jumpers or at boot time 0x80010000 Interrupt Interface Controller Display Controller Interrupt Request read – Simply writing to display memory (also called Memory write Addressable the “frame buffer”) changes image on screen • CPU interacts with a Controller control Memory 0x8000F000 – Contains a set of registers that status and/or » Addr: 0x8000F000 — 0x8000FFFF can be read and written Registers Queues – Writing graphics description to cmd queue (port 0x20) Memory Mapped 0x0007F004 Command – May contain memory for request » Say enter a set of triangles describing some scene queues or bit-mapped images Region: 0x8f008020 0x0007F000 Status • Regardless of the complexity of the connections and buses, processor » Addr: 0x80010000 — 0x8001FFFF accesses registers in two ways: – Writing to the command register may cause – I/O instructions: in/out instructions on-board graphics hardware to do something » Example from the Intel architecture: out 0x21,AL » Say render the above scene Physical – Memory mapped I/O: load/store instructions » Registers/memory appear in physical address space » Addr: 0x0007F004 Address » I/O accomplished with load and store instructions • Can protect with address translation Space 10/18/17 CS162 © UCB Spring 2017 Lec 16.15 10/18/17 CS162 © UCB Spring 2017 Lec 16.16 Administrivia • Midterm 2 coming up on Mon 10/23 6:30-8:00PM – All topics up to and including Lecture 16 » Focus will be on Lectures 10 – 16 and associated readings » Projects 1 and 2 » Homework 0 – 2 – Closed book – 2 pages hand-written notes both sides – Room assignment » Li Ka Shing, GPB 100, Kreober 160 BREAK • Project 2 Design Documents due today! • Sign up: Project 2 Design Reviews! 10/18/17 CS162 © UCB Spring 2017 Lec 16.17 10/18/17 CS162 © UCB Spring 2017 Lec 16.18 Transferring Data To/From Controller Transferring Data To/From Controller • Programmed I/O: • Programmed I/O: – Each byte transferred via processor in/out or load/store – Each byte transferred via processor in/out or load/store – Pro: Simple hardware, easy to program – Pro: Simple hardware, easy to program – Con: Consumes processor cycles proportional to data size – Con: Consumes processor cycles proportional to data size • Direct Memory Access: • Direct Memory Access: – Give controller access to memory bus – Give controller access to memory bus – Ask it to transfer 1 – Ask it to transfer data blocks to/from data blocks to/from memory directly memory directly 6 • Sample interaction • Sample interaction 2 with DMA controller with DMA controller 5 (from OSC book): 3 (from OSC book): 4 10/18/17 CS162 © UCB Spring 2017 Lec 16.19 10/18/17 CS162 © UCB Spring 2017 Lec 16.20 I/O Device Notifying the OS Device Drivers • Device Driver: Device-specific code in the kernel that interacts • The OS needs to know when: directly with the device hardware – The I/O device has completed an operation – Supports a standard, internal interface – The I/O operation has encountered an error – Same kernel I/O system can interact easily with different device drivers • I/O Interrupt: – Special device-specific configuration supported with the ioctl() – Device generates an interrupt whenever it needs service system call – Pro: handles unpredictable events well – Con: interrupts relatively high overhead • Polling:
Recommended publications
  • 2Nd Generation Intel Core Processor Family with Intel 6 Series Chipset Development Kit User Guide
    2nd Generation Intel® Core™ Processor Family with Intel® 6 Series Chipset Development Kit User Guide March 2011 Document Number: 325208 About This Document INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance.
    [Show full text]
  • The New Intel® Xeon® Processor Scalable Family
    Akhilesh Kumar Intel Corporation, 2017 Authors: Don Soltis, Irma Esmer, Adi Yoaz, Sailesh Kottapalli Notices and Disclaimers This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
    [Show full text]
  • Im Divar Ip 6000 2U
    DIVAR IP 6000 2U DIP-6080-00N, DIP-6082-8HD, DIP-6083-8HD en Installation Manual DIVAR IP 6000 2U Table of Contents | en 3 Table of contents 1 Safety precautions 5 1.1 General safety precautions 5 1.2 Electrical safety precautions 6 1.3 ESD precautions 7 1.4 Operating precautions 7 1.5 Important notices 8 1.6 FCC and ICES compliance 8 2 System overview 9 2.1 Chassis features 9 2.2 Chassis components 9 2.2.1 Chassis 10 2.2.2 Backplane 10 2.2.3 Fans 10 2.2.4 Mounting rails 10 2.2.5 Power supply 10 2.2.6 Air shroud 10 2.3 System interface 10 2.3.1 Control panel buttons 11 2.3.2 Control panel LEDs 12 2.3.3 Drive carrier LEDs 12 3 Chassis setup and maintenance 13 3.1 Removing the chassis cover 13 3.2 Installing hard drives 14 3.2.1 Removing hard drive trays 14 3.2.2 Installing a hard drive 15 3.3 Installing an optional floppy or fixed hard drive 16 3.4 Installing or replacing a DVD-ROM drive 17 3.5 Replacing the internal transcoder device 17 3.6 Replacing or installing the front port panel 17 3.7 Installing the motherboard 18 3.8 Installing the air shroud 18 3.9 System fans 19 3.10 Power supply 20 3.10.1 Replacing the power supply 21 3.10.2 Replacing the power distributor 22 4 Rack installation 23 4.1 Unpacking the system 23 4.2 Preparing for setup 23 4.2.1 Choosing a setup location 23 4.2.2 Rack precautions 23 4.2.3 General system precautions 24 4.2.4 Rack mounting considerations 24 4.3 Rack mounting instructions 24 4.3.1 Separating the sections of the rack rails 25 4.3.2 Installing the inner rails 26 4.3.3 Installing the outer rails to the
    [Show full text]
  • Desktop 4Th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2
    Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2 July 2014 Order No.: 328897-008 By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
    [Show full text]
  • BRKINI-2390.Pdf
    BRKINI-2390 Data Center security within modern compute and attached fabrics - servers, IO, management Dan Hanson Director UCS Architectures and Technical Marketing Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Recent Press Items © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • x86 Architecture Review • BIOS and Kernel Manipulation • Device Firmware Manipulation • On Server Data Storage Manipulation • Segmentation and Device access • Root of Trust Flow • Policy Control vs. Component Configuration (Cisco UCS and ACI) • Example of Security Offloading: Skyport Systems • Conclusion x86 Architecture Review Many Points of possible attack X86 Reference Legacy Elements • You may see many terms in various articles shown here • Over time, items moving on the CPU itself • Memory • PCIe • Processors/Servers differentiation in some areas • Front Side Bus speeds • Direct Media Interface • Southbridge Configurations BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 X86 Reference Fundamental Architecture • Not shown: Quick Path Interconnect/UltraPath Interconnect for CPU to CPU communications • Varied counts and speeds for multi-socket systems • Current Designs have On-Die PCIe and Memory controllers • Varied numbers and DIMMs in memory channels by CPU • Platform Controller Hub varies and can even offer server acceleration and security functions BRKINI-2390 © 2018 Cisco and/or its affiliates.
    [Show full text]
  • Dell EMC Poweredge C4140 Technical Guide
    Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison.............................................................................................................................................................
    [Show full text]
  • ECE 571 – Advanced Microprocessor-Based Design Lecture 16
    ECE 571 { Advanced Microprocessor-Based Design Lecture 16 Vince Weaver http://www.eece.maine.edu/~vweaver [email protected] 31 March 2016 Announcements • Project topics • HW#8 will be similar, about a modern ARM chip 1 Busses • Grey Code, only one bit change when incrementing. Lower energy on busses? (Su and Despain, ISLPED 1995). 2 Reading of the Webpage http://anandtech.com/show/9582/intel-skylake-mobile-desktop-launch-architecture-analysis/ The Intel Skylake Mobile and Desktop Launch, with Architecture Analysis by Ian Cutress 3 Background on where info comes from Intel Developer Forum This one was in August 4 Name tech Year Conroe/Merom 65nm Tock 2006 Penryn 45nm Tick 2007 Nehalem 45nm Tock 2008 Westmere 32nm Tick 2010 Sandy Bridge 32nm Tock 2011 Ivy Bridge 22nm Tick 2012 Haswell 22nm Tock 2013 Broadwell 14nm Tick 2014 Skylake 14nm Tock 2015 Kaby Lake? 14nm Tock 2016 5 Clock: tick-tock. Upgrade the process technology, then revamp the uarch. 14nm technology? Finfets? What technology are Pis at? 40nm? 14nm yields getting better. hard to get, even with electron beam lithography plasma damage to low-k silicon only 0.111nm finfet. Intel has plants Arizona, etc. Delay to 10nm 7nm? EUV? 6 Skylake Processor { Page 1 • 4.5W ultra-mobile to 65W desktop They release desktop first these days. For example just today releasing \Xeon E5-2600 v4" AKA Broadwell-EP Confusing naming i3, i5, i7, Xeon, Pentium, m3, m5, m7, etc. Number of pins important. Low-power stuck with LPDDR3/DDR3L instead of DDR4 possibly due to lack of pins? eDRAM? 7 Intel no longer releasing info on how many transistors/transistor size? 8 Skylake Processor { Page 2 • \mobile first” design.
    [Show full text]
  • Intel® Coretm 2 Duo Processor and Mobile Intel® GME965 Express Chipset
    Intel® CoreTM 2 Duo processor and Mobile Intel® GME965 Express Chipset Development Kit User Manual June 2007 Document Number: 316704-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.
    [Show full text]
  • Intel® Compute Card CD1M3128MK CD1IV128MK Technical Product Specification
    + Intel® Compute Card CD1M3128MK CD1IV128MK Technical Product Specification August 2017 Order Number: J46734-001 Intel® Compute Card CD1M3128MK or CD1IV128MK may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata, if any, are documented in Intel® Compute Card CD1M3128MK or CDIV128MK Specification Updates Revision History Revision Revision History Date 001 First release August 2017 Disclaimer This product specification applies to only the standard Intel® Compute Card with BIOS identifier MKKBLY35.86A or MKKBI5V.86A. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. All Compute Cards are evaluated as Information Technology Equipment (I.T.E.) for installation in homes, offices, schools, computer rooms, and similar locations. The suitability of this product for other PC or embedded non-PC applications or other environments, such as medical, industrial, alarm systems, test equipment, etc.
    [Show full text]
  • Technical Reference Guide HP Compaq Dc7800 Series Business Desktop Computers
    Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers Document Part Number: 461444-001 October 2007 This document provides information on the design, architecture, function, and capabilities of the HP Compaq dc7800 Series Business Desktop Computers. This information may be used by engineers, technicians, administrators, or anyone needing detailed information on the products covered. © Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in the U.S. and other countries. Intel, Intel Core 2 Duo, Intel Core 2 Quad, Pentium Dual-Core, Intel Inside, and Celeron are trademarks of Intel Corporation in the U.S. and other countries. Adobe, Acrobat, and Acrobat Reader are trademarks or registered trademarks of Adobe Systems Incorporated. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. This document contains proprietary information that is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers First Edition (October 2007) Document Part Number: 461444-001 Contents 1Introduction 1.1 About this Guide . 1–1 1.1.1 Online Viewing . 1–1 1.1.2 Hardcopy . 1–1 1.2 Additional Information Sources . 1–1 1.3 Model Numbering Convention .
    [Show full text]
  • M9537A Axie Embedded Controller 2.8 Ghz Quad-Core
    M9537A AXIe Embedded Controller 2.8 GHz Quad-Core Find us at www.keysight.com Page 1 P a g e Introduction The Keysight Technologies M9537A is a second-generation AXIe embedded controller which enables new capabilities such AXIe wide PCIe® support, multiple 4K video outputs, and optional high-speed disk cache. It is designed for high performance, compact AXIe systems. The embedded controller is a powerful, one-slot module that easily integrates into hybrid test systems using the GP-IB, USB, and LAN front panel interfaces. Built upon a high-performance Intel Core i7 quad- core processor with Hyper-Threading Technology, it is perfect for high-performance applications and multi-tasking environments. Key Features • Intel i7-6820EQ 2.8 GHz quad-core processor with Hyper-Threading Technology • Single-slot AXIe controller module • Front removable 240 GB solid state drive • 8 GB DDR4 RAM memory standard with an option for 16 GB • Gen 3 x16 PCIe link to the AXIe backplane providing up to 16 GB/s max data bandwidth from CPU to AXIe backplane (actual data bandwidth depends on chassis capability) • Front panel connection connections: four USB 3.0, two USB 2.0, two LAN (10/100/1000), three 4K- capable DisplayPort 1.2, and GP-IB. • x8 Gen 3 PCIe IPASS connector on the front for controlling a second AXIe chassis or connection to RAID storage • Available with either a Windows 7 or Window 10 operating system (both are 64-bit) High Performance Hardware Platform Based on the high-performance Intel i7 processor with Hyper-Threading Technology, the M9537A embedded controller is ideal for multi-threading environments and multi-chassis systems.
    [Show full text]
  • The Requirements of I/O OS Basics: I/O in a Picture
    The Requirements of I/O CS162 • So far in this course: Operating Systems and – We have learned how to manage CPU and memory Systems Programming Lecture 16 • What about I/O? – Without I/O, computers are useless (disembodied brains?) General I/O – But… thousands of devices, each slightly different » How can we standardize the interfaces to these devices? October 24th, 2016 – Devices unreliable: media failures and transmission errors Prof. Anthony D. Joseph » How can we make them reliable??? http://cs162.eecs.Berkeley.edu – Devices unpredictable and/or slow » How can we manage them if we don’t know what they will do or how they will perform? 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.2 OS Basics: I/O In a Picture Threads Read / Address Spaces Windows Write wires Processes Files Sockets Processor OS Hardware Virtualization Core I/O Software Controllers Hardware ISA Memory interrupts Secondary Read / DMA transfer Write Main Secondary Storage Core Processor Protection Memory Storage (Disk) Boundary (DRAM) OS (SSD) Ctrlr Networks storage • I/O devices you recognize are supported by I/O Controllers • Processors accesses them by reading and writing IO registers as if they were memory Displays – Write commands and arguments, read status and results Inputs 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.3 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.4 Operational Parameters for I/O Kernel Device Structure • Data granularity: Byte vs. Block The System Call Interface – Some devices provide single byte at a time (e.g., keyboard) – Others provide whole blocks (e.g., disks, networks, etc.) Process Memory Device Filesystems Networking Management Management Control • Access pattern: Sequential vs.
    [Show full text]