Salamander News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aneides Aeneus) from Virginia, USA
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/282132758 First Report of Ranavirus and Batrachochytrium dendrobatidis in Green Salamanders (Aneides aeneus) from Virginia, USA. ARTICLE in HERPETOLOGICAL REVIEW · SEPTEMBER 2015 READS 94 8 AUTHORS, INCLUDING: Walter H. Smith Michael Kevin Hamed The University of Virginia's College at Wise Virginia Highlands Community College 14 PUBLICATIONS 33 CITATIONS 10 PUBLICATIONS 68 CITATIONS SEE PROFILE SEE PROFILE Debra L Miller University of Tennessee 109 PUBLICATIONS 1,214 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Walter H. Smith letting you access and read them immediately. Retrieved on: 29 December 2015 AMPHIBIAN AND REPTILE DISEASES 357 Herpetological Review, 2015, 46(3), 357–361. © 2015 by Society for the Study of Amphibians and Reptiles First Report of Ranavirus and Batrachochytrium dendrobatidis in Green Salamanders (Aneides aeneus) from Virginia, USA The Green Salamander (Aneides aeneus) is distributed from Diseases caused by ranaviruses are responsible for amphibian extreme southwest Pennsylvania, USA to northern Alabama die-offs throughout Europe and North America, including and Mississippi with a disjunct population in southern North the southeastern United States (Green et al. 2002; Miller et al. Carolina, northeastern Georgia, and northern South Carolina 2011; Hoverman et al. 2012), and may contribute to population (Petranka 1998). Because of unique habitat requirements, Green declines (Gray et al. 2009a). In the southern Appalachian Salamanders are thought to be at risk of range-wide declines and Mountains, ranavirus infections have been reported in 18 species extirpations (Corser 2001). -
Pond-Breeding Amphibian Guild
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Pond-breeding Amphibians Guild Primary Species: Flatwoods Salamander Ambystoma cingulatum Carolina Gopher Frog Rana capito capito Broad-Striped Dwarf Siren Pseudobranchus striatus striatus Tiger Salamander Ambystoma tigrinum Secondary Species: Upland Chorus Frog Pseudacris feriarum -Coastal Plain only Northern Cricket Frog Acris crepitans -Coastal Plain only Contributors (2005): Stephen Bennett and Kurt A. Buhlmann [SCDNR] Reviewed and Edited (2012): Stephen Bennett (SCDNR), Kurt A. Buhlmann (SREL), and Jeff Camper (Francis Marion University) DESCRIPTION Taxonomy and Basic Descriptions This guild contains 4 primary species: the flatwoods salamander, Carolina gopher frog, dwarf siren, and tiger salamander; and 2 secondary species: upland chorus frog and northern cricket frog. Primary species are high priority species that are directly tied to a unifying feature or habitat. Secondary species are priority species that may occur in, or be related to, the unifying feature at some time in their life. The flatwoods salamander—in particular, the frosted flatwoods salamander— and tiger salamander are members of the family Ambystomatidae, the mole salamanders. Both species are large; the tiger salamander is the largest terrestrial salamander in the eastern United States. The Photo by SC DNR flatwoods salamander can reach lengths of 9 to 12 cm (3.5 to 4.7 in.) as an adult. This species is dark, ranging from black to dark brown with silver-white reticulated markings (Conant and Collins 1991; Martof et al. 1980). The tiger salamander can reach lengths of 18 to 20 cm (7.1 to 7.9 in.) as an adult; maximum size is approximately 30 cm (11.8 in.). -
GREEN SALAMANDER Scientific Name: Aneides Aeneus Cope And
Common Name: GREEN SALAMANDER Scientific Name: Aneides aeneus Cope and Packard Other Commonly Used Names: none Previously Used Scientific Names: none Family: Plethodontidae Rarity Ranks: G3G4/S2 State Legal Status: Rare Federal Legal Status: none Description: A medium-sized salamander averaging 10.2 cm (4 inches) in total length, the green salamander has a dark brown or black dorsal background and numerous irregularly- shaped, light-green or yellowish-green blotches, similar in coloration to rock-encrusting lichens. Its head, legs, and tail are colored and patterned similarly; the belly is light and unmarked or lightly flecked with yellow. Both its body and head are relatively flat, its webbed toes expanded and square-tipped, and its round tail as long or longer than the body. Males have a broader head than females. Hatchlings typically have distinctly yellow limbs, especially the upper parts, and the pattern on the head and back is usually duller and less extensive than that of adults. Similar Species: Green salamanders are the only member of their genus in Georgia and no other species should be confused with them. Habitat: This is a species adapted to living in and around sandstone cliffs and outcroppings, especially those with abundant cracks and crevices. Green salamanders prefer permanently moist but seldom wet outcrops. They are occasionally found on live trees and behind the bark of rotting trees in the moist forests surrounding these rocky sites. Diet: Green salamanders feed opportunistically on small insects, spiders, snails, and slugs. Life History: The fissures within rocky cliffs and outcroppings serve as shelters, foraging areas, and brooding sites. -
Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009
National Park Service U.S. Department of the Interior Natural Resource Program Center Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2010/098 ON THE COVER Clockwise from top left, Hyla chrysoscelis (Cope’s grey treefrog), Hyla gratiosa (barking treefrog), Scaphiopus holbrookii (Eastern spadefoot), and Hyla cinerea (Green treefrog). Photographs by J.D. Willson. Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2010/098 Michael W. Byrne, Laura M. Elston, Briana D. Smrekar, Brent A. Blankley, and Piper A. Bazemore USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia, 31558 October 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Pre-Incursion Plan PIP006 Salamanders and Newts
Pre-incursion Plan PIP006 Salamanders and Newts Pre-incursion Plan PIP006 Salamanders and Newts Order: Ambystomatidae, Cryptobranchidea and Proteidae Scope This plan is in place to guide prevention and eradication activities and the management of non-indigenous populations of Salamanders and Newts (Order Caudata; Families Salamandridae, Ambystomatidae, Cryptobranchidea and Proteidae) amphibians in the wild in Victoria. Version Document Status Date Author Reviewed By Approved for Release 1.0 First Draft 26/07/11 Dana Price M. Corry, S. Wisniewski and A. Woolnough 1.1 Second Draft 21/10/11 Dana Price S. Wisniewski 2.0 Final Draft 18/01/2012 Dana Price 3.0 Revision Draft 12/11/15 Dana Price J. Goldsworthy 3.1 New Final 10/03/2016 Nigel Roberts D.Price New DEDJTR templates and document review Published by the Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, May 2016 © The State of Victoria 2016. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Authorised by the Department of Economic Development, Jobs, Transport and Resources, 1 Spring Street, Melbourne 3000. Front cover: Smooth Newt (Lissotriton vulgaris) Photo: Image courtesy of High Risk Invasive Animals group, DEDJTR Photo: Image from Wikimedia Commons and reproduced with permission under the terms of the Creative Commons Attribution-Share Alike 2.5 Generic License. ISBN 078-1-925532-40-1 (pdf/online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
Caudata: Hynobiidae): Heterochronies and Reductions
65 (1): 117 – 130 © Senckenberg Gesellschaft für Naturforschung, 2015. 4.5.2015 Development of the bony skeleton in the Taiwan salamander, Hynobius formosanus Maki, 1922 (Caudata: Hynobiidae): Heterochronies and reductions Anna B. Vassilieva 1 *, June-Shiang Lai 2, Shang-Fang Yang 2, Yu-Hao Chang 1 & Nikolay A. Poyarkov, Jr. 1 1 Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia — 2 Department of Life Science, National Taiwan Normal University, 88, Sec. 4 Tingchou Rd., Taipei 11677, Taiwan, R.O.C. — *Cor- responding author; vassil.anna(at)gmail.com Accepted 19.ii.2015. Published online at www.senckenberg.de / vertebrate-zoology on 4.v.2015. Abstract The development of the bony skeleton in a partially embryonized lotic-breeding salamander Hynobius formosanus is studied using the ontogenetic series from late embryos to postmetamorphic juveniles and adult specimen. Early stages of skull development in this spe- cies are compared with the early cranial ontogeny in two non-embryonized lentic-breeding species H. lichenatus and H. nigrescens. The obtained results show that skeletal development distinguishes H. formosanus from other hynobiids by a set of important features: 1) the reduction of provisory ossifications (complete absence of palatine and reduced state of coronoid), 2) alteration of a typical sequence of ossification appearance, namely, the delayed formation of vomer and coronoid, and 3) the absence of a separate ossification center of a lacrimal and formation of a single prefrontolacrimal. These unique osteological characters in H. formosanus are admittedly connected with specific traits of its life history, including partial embryonization, endogenous feeding until the end of metamorphosis and relatively short larval period. -
2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES....................................................................................................................................... -
Linnaeus, 1758) from Bozcaada (Çanakkale, Turkey
Turkish Journal of Zoology Turk J Zool (2017) 41: 189-195 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1602-14 Taxonomic status of a newly described island population of the smooth newt Lissotriton vulgaris (Linnaeus, 1758) from Bozcaada (Çanakkale, Turkey) 1 1 1 2, Nurşen ÇÖRDÜK , Çiğdem GÜL , Murat TOSUNOĞLU , Konstantinos SOTIROPOULOS * 1 Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 2 Department of Biological Applications and Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece Received: 08.02.2016 Accepted/Published Online: 16.05.2016 Final Version: 25.01.2017 Abstract: The taxonomic status and phylogenetic position of the recently recorded smooth newt (Lissotriton vulgaris) population from the island of Bozcaada (Çanakkale, Turkey) is clarified on the basis of morphological and molecular phylogenetic analyses. The L. vulgaris population from Bozcaada presents body proportions and morphological features of subsp. schmidtlerorum, such as small body length, absence of the tail filament, and dorsal crest with pointed free margin. Similarly, phylogenetic analyses of mitochondrial DNA sequences (ND4, 16S rRNA) place the Bozcaada population within Clade E of the recent L. vulgaris phylogeny, which consists of L. v. schmidtlerorum populations. Key words: Lissotriton vulgaris schmidtlerorum, mitochondrial DNA, 16S rRNA, ND4, taxonomy, Bozcaada (Tenedos), Turkey The smooth newt, Lissotriton vulgaris L., is a polytypic Raffaëlli, 2009), on the basis of mitochondrial sequences amphibian species with a wide range across Eurasia, (Mettouris and Kornilios, 2015). This geographically extending from Western Europe, excluding Iberia, further restricted subspecies is distributed along the Marmara east to Western Siberia and Western Anatolia. -
Piano D'azione Salamandra Finale
PIANO D’AZIONE PER LA SALAMANDRA ATRA AURORAE E SALAMANDRA ATRA PASUBIENSIS IN VENETO - 2009-2013 N0N0N0 PIANO D’AZIONE PER PROGETTO LIFE04 NAT/IT/000167 “SISTEMA AURORA” PIANO D’AZIONE PER Salamandra atra aurorae e Salamandra atra pasubiensispasubiensis AGGIORNAMENTO LUGLIO 2008 Area di riferimento : Veneto PERIODO DI VALIDITÀ 2009-2013 MARIANNA BELLON, STEFANO FILACORDA (a cura di) PROGETTO LIFE04 NAT/IT/000167 : “SISTEMA AURORA” 1 PIANO D’AZIONE PER LA SALAMANDRA ATRA AURORAE E SALAMANDRA ATRA PASUBIENSIS IN VENETO - 2009-2013 1. INTRODUZIONE ...................................................................................................................... 4 2.1 Aspetti normativi ................................................................................................................. 5 2.2 Biologia e status .................................................................................................................... 7 2.2.1 Sistematica ..................................................................................................................... 7 2.2.2. Morfologia .................................................................................................................... 7 2.2.3 Habitat ........................................................................................................................... 8 2.2.4. Ecologia ........................................................................................................................ 9 2.2.5 Struttura della popolazione ........................................................................................ -
Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus Axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Biology Commons Scholar Commons Citation Adcock, Zachary Cole, "Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3941 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida by Zachary C. Adcock A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Integrative Biology College of Arts and Sciences University of South Florida Co-Major Professor: Earl D. McCoy, Ph.D. Co-Major Professor: Henry R. Mushinsky, Ph.D. Stephen M. Deban, Ph.D. Date of Approval: July 10, 2012 Keywords: aquatic salamander, life history, oviposition, clutch size, size at maturity Copyright © 2012, Zachary C. Adcock ACKNOWLEDGMENTS I thank my co-major professors, Henry Mushinsky and Earl McCoy, for their patience and guidance through a couple of thesis projects lasting several years. I also thank my committee member, Steve Deban, for providing excellent comments to improve this thesis document. -
Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon Punctatus Highton (Caudata: Plethodontidae)
Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon punctatus Highton (Caudata: Plethodontidae) Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree Master of Science Biological Sciences by Matthew R. Graham Thomas K. Pauley, Committee Chairman Victor Fet, Committee Member Guo-Zhang Zhu, Committee Member April 29, 2007 ii Distribution and Conservation Genetics of the Cow Knob Salamander, Plethodon punctatus Highton (Caudata: Plethodontidae) MATTHEW R. GRAHAM Department of Biological Sciences, Marshall University Huntington, West Virginia 25755-2510, USA email: [email protected] Summary Being lungless, plethodontid salamanders respire through their skin and are especially sensitive to environmental disturbances. Habitat fragmentation, low abundance, extreme habitat requirements, and a narrow distribution of less than 70 miles in length, makes one such salamander, Plethodon punctatus, a species of concern (S1) in West Virginia. To better understand this sensitive species, day and night survey hikes were conducted through ideal habitat and coordinate data as well as tail tips (10 to 20 mm in length) were collected. DNA was extracted from the tail tips and polymerase chain reaction (PCR) was used to amplify mitochondrial 16S rRNA gene fragments. Maximum parsimony, neighbor-joining, and UPGMA algorithms were used to produce phylogenetic haplotype trees, rooted with P. wehrlei. Based on our DNA sequence data, four disparate management units are designated. Surveys revealed new records on Jack Mountain, a disjunct population that expands the known distribution of the species 10 miles west. In addition, surveys by Flint verified a population on Nathaniel Mountain, WV and revealed new records on Elliot Knob, extending the known range several miles south.