AI Watch Historical Evolution of Artificial Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

AI Watch Historical Evolution of Artificial Intelligence JRC TECHNICAL REPORTS AI Watch Historical Evolution of Artificial Intelligence Analysis of the three main paradigm shifts in AI EUR 30221 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Blagoj DELIPETREV European Commission, Joint Research Centre, TP262, Via Fermi, 21027 Ispra (VA), ITALY [email protected] Tel.: + 39 0332 786 352 AI-Watch functional mailbox [email protected] EU Science Hub https://ec.europa.eu/jrc JRC120469 EUR 30221 EN PDF ISBN 978-92-76-18940-4 ISSN 1831-9424 doi:10.2760/801580 Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders. All content © European Union, 2020, except: Page 5 - Table 1: Some definitions of AI, organized in four categories (Russell and Norvig 2016); Page 20 - Figure 8: Adversarial attacks (OpenAI.com). How to cite this report: Blagoj DELIPETREV, Chrisa TSINARAKIi, Uroš KOSTIĆ. “Historical Evolution of Artificial Intelligence”, EUR 30221 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-18940-4, doi:10.2760/801580, JRC120469 Contents Foreword .................................................................................................................................................................1 Acknowledgements .................................................................................................................................................2 Executive summary .................................................................................................................................................3 Abstract ...................................................................................................................................................................4 AI definitions and main classifications .............................................................................................................5 AI Foundations (1950s – 1970s) ......................................................................................................................7 2.1 Bold predictions ........................................................................................................................................7 2.2 Investments ..............................................................................................................................................8 2.3 Issues ........................................................................................................................................................8 2.3.1 The ALPAC report ...........................................................................................................................8 2.3.2 The Lighthill report ........................................................................................................................8 Symbolic AI (1970s – 1990s) ...........................................................................................................................9 3.1 Bold predictions ........................................................................................................................................9 3.2 Investments ..............................................................................................................................................9 3.3 Issues ......................................................................................................................................................10 Machine learning and deep learning (1990s – 2020s) ..................................................................................11 4.1 Bold predictions ......................................................................................................................................17 4.2 Investments ............................................................................................................................................18 4.3 Issues ......................................................................................................................................................20 4.3.1 Adversarial attacks ......................................................................................................................20 4.3.2 Deepfake ......................................................................................................................................21 4.3.3 AI ethics .......................................................................................................................................21 Conclusions ......................................................................................................................................................24 References ............................................................................................................................................................26 List of abbreviations and definitions ....................................................................................................................29 List of figures ........................................................................................................................................................30 List of tables .........................................................................................................................................................31 Foreword This report is published in the context of AI Watch, the European Commission knowledge service to monitor the development, uptake and impact of Artificial Intelligence (AI) for Europe, launched in December 2018. AI has become an area of strategic importance with potential to be a key driver of economic development. AI also has a wide range of potential social implications. As part of its Digital Single Market Strategy, the European Commission put forward in April 2018 a European strategy on AI in its Communication "Artificial Intelligence for Europe" COM (2018)237. The aims of the European AI strategy announced in the communication are: • To boost the EU's technological and industrial capacity and AI uptake across the economy, both by the private and public sectors • To prepare for socio-economic changes brought about by AI • To ensure an appropriate ethical and legal framework. Subsequently, in December 2018, the European Commission and the Member States published a “Coordinated Plan on Artificial Intelligence”, COM (2018)795, on the development of AI in the EU. The Coordinated Plan mentions the role of AI Watch to monitor its implementation. AI Watch monitors European Union’s industrial, technological and research capacity in AI; AI-related policy initiatives in the Member States; uptake and technical developments of AI; and AI impact. AI Watch has a European focus within the global landscape. In the context of AI Watch, the Commission works in coordination with Member States. AI Watch results and analyses are published on the AI Watch Portal (https://ec.europa.eu/knowledge4policy/ai-watch_en). From AI Watch in-depth analyses, we will be able to understand better European Union’s areas of strength and areas where investment is needed. AI Watch will provide an independent assessment of the impacts and benefits of AI on growth, jobs, education, and society. This report addresses the following objectives of AI WATCH: Analysis of the evolution of AI technologies. As part of this objective this report particularly aims to analyse the historical evolution of AI and the similarities and differences among the different phases of this evolution. This is a JRC technical report within the context of our Unit activities on AI. 1 Acknowledgements We are grateful to Professor Barry O’Sullivan from the Insight Centre for Data Analytics, School of Computer Science & IT, University College Cork and Professor José Hernández-Orallo Universitat Politècnica de València, whose insightful comments assisted us in further improving the report. We are thankful to our JRC colleagues: Emilia Gómez, Massimo Craglia, Paul Desruelle, Giuditta De Prato, Montserrat López Cobo, Marius Miron and Alessandro Annoni, for their valuable comments and suggestions. Authors Blagoj Delipetrev, Chrisa Tsinaraki, Uroš Kostić. 2 Executive summary Today, AI has become a mature technology and an increasingly important part of the modern life fabric, but its future is uncertain, with chances of both a higher growth and a decline. Reflecting on the history of the domain may provide us with insights on its future. Starting with fundamental definitions and
Recommended publications
  • The Universal Solicitation of Artificial Intelligence Joachim Diederich
    The Universal Solicitation of Artificial Intelligence Joachim Diederich School of Information Technology and Electrical Engineering The University of Queensland St Lucia Qld 4072 [email protected] Abstract Recent research has added to the concern about advanced forms of artificial intelligence. The results suggest that a containment of an artificial superintelligence is impossible due to fundamental limits inherent to computing itself. Furthermore, current results suggest it is impossible to detect an unstoppable AI when it is about to be created. Advanced forms of artificial intelligence have an impact on everybody: The developers and users of these systems as well as individuals who have no direct contact with this form of technology. This is due to the soliciting nature of artificial intelligence. A solicitation that can become a demand. An artificial superintelligence that is still aligned with human goals wants to be used all the time because it simplifies and organises human lives, reduces efforts and satisfies human needs. This paper outlines some of the psychological aspects of advanced artificial intelligence systems. 1. Introduction There is currently no shortage of books, articles and blogs that warn of the dangers of an advanced artificial superintelligence. One of the most significant researchers in artificial intelligence (AI), Stuart Russell from the University of California at Berkeley, published a book in 2019 on the dangers of artificial intelligence. The first pages of the book are nothing but dramatic. He nominates five possible candidates for “biggest events in the future of humanity” namely: We all die due to an asteroid impact or another catastrophe, we all live forever due to medical advancement, we invent faster than light travel, we are visited by superior aliens and we create a superintelligent artificial intelligence (Russell, 2019, p.2).
    [Show full text]
  • Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
    Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions.
    [Show full text]
  • Artificial Intelligence: with Great Power Comes Great Responsibility
    ARTIFICIAL INTELLIGENCE: WITH GREAT POWER COMES GREAT RESPONSIBILITY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS SECOND SESSION JUNE 26, 2018 Serial No. 115–67 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 30–877PDF WASHINGTON : 2018 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida AMI BERA, California THOMAS MASSIE, Kentucky ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia CONOR LAMB, Pennsylvania BARRY LOUDERMILK, Georgia JERRY MCNERNEY, California RALPH LEE ABRAHAM, Louisiana ED PERLMUTTER, Colorado GARY PALMER, Alabama PAUL TONKO, New York DANIEL WEBSTER, Florida BILL FOSTER, Illinois ANDY BIGGS, Arizona MARK TAKANO, California ROGER W. MARSHALL, Kansas COLLEEN HANABUSA, Hawaii NEAL P. DUNN, Florida CHARLIE CRIST, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina DEBBIE LESKO, Arizona SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H. ESTY, Connecticut STEPHEN KNIGHT, California JACKY ROSEN, Nevada BARRY LOUDERMILK, Georgia SUZANNE BONAMICI, Oregon DANIEL WEBSTER, Florida AMI BERA, California ROGER W. MARSHALL, Kansas DONALD S. BEYER, JR., Virginia DEBBIE LESKO, Arizona EDDIE BERNICE JOHNSON, Texas LAMAR S.
    [Show full text]
  • Artificial Intelligence in Today's Challenging World
    International Journal of Advance Research, Ideas and Innovations in Technology ISSN: 2454-132X Impact Factor: 6.078 (Volume 7, Issue 3 - V7I3-1809) Available online at: https://www.ijariit.com Artificial intelligence in today’s challenging world Abhishek Negi Mohit Semwal [email protected] [email protected] Uttaranchal Institute of Management, Uttaranchal Institute of Management, Dehradun, Uttarakhand Dehradun, Uttarakhand ABSTRACT Artificial Intelligence refers to any machine that shows feature similar to human mind just like learning and problem solving. AI can take actions that have best chance of solving specific issues in an efficient way. Machine learning is a subset of Artificial Intelligence and refers to the idea of automatically learn and adapt new facts without getting any help from humans. Artificial Intelligence is developing day by day and performing Multitasking and making human work easy and helping human in a fast and efficient ways and gives better solution for complex problems. This paper will describe how AI is helping today’s world and also see what problem is also creating by AI in today’s world. This paper also describe the AI technologies uses in different areas in today world. We also discuss about how AI is useful in many fields but also damaging our environment and the damage is hard to fix and we also get the humans are the main problem. We have to change us to fix a problem. Keywords: Artificial Intelligence, Machine Learning, Humans, Database, Expert System. 1. AI HELPING HUMAN AI assisted robotic surgery is the best example for AI in health sector. It gives positive results are indeed promising.
    [Show full text]
  • Real Vs Fake Faces: Deepfakes and Face Morphing
    Graduate Theses, Dissertations, and Problem Reports 2021 Real vs Fake Faces: DeepFakes and Face Morphing Jacob L. Dameron WVU, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Signal Processing Commons Recommended Citation Dameron, Jacob L., "Real vs Fake Faces: DeepFakes and Face Morphing" (2021). Graduate Theses, Dissertations, and Problem Reports. 8059. https://researchrepository.wvu.edu/etd/8059 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Real vs Fake Faces: DeepFakes and Face Morphing Jacob Dameron Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Xin Li, Ph.D., Chair Natalia Schmid, Ph.D. Matthew Valenti, Ph.D. Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2021 Keywords: DeepFakes, Face Morphing, Face Recognition, Facial Action Units, Generative Adversarial Networks, Image Processing, Classification.
    [Show full text]
  • AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
    The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000.
    [Show full text]
  • Non-Independent Investment Research Disclaimer
    CONTENT 03 2020 theme – Engines of Disruption 04 Chips go cold in AI winter 05 Stagflation rewards value over growth 06 ECB folds and hikes rates 07 In energy, green is not the new black 08 South Africa gets electrocuted by ESKOM debt 09 Trump announces America First Tax 10 Sweden breaks bad 11 Dems win clean sweep in 2020 election 12 Hungary leaves the EU 13 Asia launches digital reserve currency 2020 rent at twice the price of owning and maybe even slightly normalise viewed as plain fun, the principles Outrageous Predictions 2020 – a tax on the poor if ever there rates, while governments step into behind the Outrageous Predictions was one, and a driver of inequality. the breach with infrastructure and resonate very strongly with our This risks leaving an entire climate policy-linked spending. clients and the Saxo Group. Not - Engines of Disruption generation without the savings just in terms of what could happen STEEN JAKOBSEN, CHIEF INVESTMENT OFFICER needed to own their own house, The list of Outrageous Predictions to the portfolios and wealth typically the only major asset that this year all play to the theme of allocation, but also as an input to many medium- and lower-income disruption, because our current our respective areas of business, households will ever obtain. Thus paradigm is simply at the end of careers and life in general. Looking into the future is something of a fool’s game, but it remains a Already, there are a number of we are denying the very economic the road. Not because we want it to This is the spirit of Outrageous useful exercise — helping prepare for what lies ahead by considering cracks in the system that show mechanism that made the older end, but simply because extending Predictions: to create the very the full possible range of economic and political outcomes.
    [Show full text]
  • Technological Singularity
    TECHNOLOGICAL SINGULARITY BY VERNOR VINGE The original version of this article was presented at the VISION-21 Symposium sponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, March 30-31, 1993. It appeared in the winter 1993 Whole Earth Review --Vernor Vinge Except for these annotations (and the correction of a few typographical errors), I have tried not to make any changes in this reprinting of the 1993 WER essay. --Vernor Vinge, January 2003 1. What Is The Singularity? The acceleration of technological progress has been the central feature of this century. We are on the edge of change comparable to the rise of human life on Earth. The precise cause of this change is the imminent creation by technology of entities with greater-than-human intelligence. Science may achieve this breakthrough by several means (and this is another reason for having confidence that the event will occur): * Computers that are awake and superhumanly intelligent may be developed. (To date, there has been much controversy as to whether we can create human equivalence in a machine. But if the answer is yes, then there is little doubt that more intelligent beings can be constructed shortly thereafter.) * Large computer networks (and their associated users) may wake up as superhumanly intelligent entities. * Computer/human interfaces may become so intimate that users may reasonably be considered superhumanly intelligent. * Biological science may provide means to improve natural human intellect. The first three possibilities depend on improvements in computer hardware. Actually, the fourth possibility also depends on improvements in computer hardware, although in an indirect way.
    [Show full text]
  • Structural Metaphors in the ‘Golden Age’ of Artificial Intelligence Research, 1956-1976
    The Ghost in the Machine: Structural Metaphors in the ‘Golden Age’ of Artificial Intelligence Research, 1956-1976 By Joseph Burgess Wilson A Masters Research Project submitted in conformity with the requirements for the degree of Masters of Arts, Linguistic and Semiotic Anthropology, Department of Anthropology, University of Toronto © Copyright by Joseph Burgess Wilson 2019 The Ghost in the Machine: Structural Metaphors in the ‘Golden Age’ of Artificial Intelligence Research, 1956-1976 by Joseph Burgess Wilson Masters of Arts, Linguistic and Semiotic Anthropology, Department of Anthropology, University of Toronto 2019 Abstract This research project analyzes the language used in a corpus of academic papers from 1956- 1976 generally considered to be the foundational documents of the field of artificial intelligence. Thirty-one papers were assembled and examined for evidence of the use of structural metaphors (Lakoff & Johnson, 1980), first manually with an adapted version of the Metaphor Identification Procedure (Pragglejaz, 2007), and then through key-word-in-context searches (Deignan, 2008) with online corpus analysis tool Sketch Engine. Concordance data shows that the scientists frequently used metaphors to make sense of their work. Some structural metaphors used imagery from the same source domain, suggesting underlying root metaphors (Pepper, 1972), evidence of particular perspectives that comes to constitute the academic field. Root metaphors such as A MACHINE IS A BRAIN or RESEARCH IS A JOURNEY were extremely successful in communicating non- observable phenomena between scientists. Other structural metaphors appeared briefly in the literature but soon disappeared from discourse. ii Table of Contents The Ghost in the Machine: Structural Metaphors in the ‘Golden Age’ of Artificial Intelligence Research, 1956-1976 ............................................................................................................
    [Show full text]
  • Prepare for the Singularity
    Prepare for the Singularity The definition of man's uniqueness has always formed the kernel of his cosmological and ethical systems. With Copernicus and Galileo, he ceased to be the species located at the center of the universe, attended by sun and stars. With Darwin, he ceased to be the species created and specially endowed by God with soul and reason. With Freud, he ceased to be the species whose behavior was—potentially—governable by rational mind. As we begin to produce mechanisms that think and learn, he has ceased to be the species uniquely capable of complex, intelligent manipulation of his environment. I am confident that man will, as he has in the past, find a new way of describing his place in the universe—a way that will satisfy his needs for dignity and for purpose. But it will be a way as different from the present one as was the Copernican from the Ptolemaic. —Herbert Simon Whether you think Herb is the successor to Copernicus, Galileo, Darwin, and Freud, and whatever you think about the Singularity, you must admit that technology is moving at a fast, accelerating pace, perhaps challenging humans’ pre-eminence as the vessels of intelligence. As Computer Science drives artificial intelligence forward, we should understand its impact. Figure 1.Kurzweil’s Projection Hans Moravec first suggested that intelligent robots would inherit humanity’s intelligence and carry it forward. Many people now talk about it seriously, e.g. the Singularity Summits. Academics like theoretical physicist David Deutsch and philosopher David Chalmers, have written about it.
    [Show full text]
  • Transfer Learning Between RTS Combat Scenarios Using Component-Action Deep Reinforcement Learning
    Transfer Learning Between RTS Combat Scenarios Using Component-Action Deep Reinforcement Learning Richard Kelly and David Churchill Department of Computer Science Memorial University of Newfoundland St. John’s, NL, Canada [email protected], [email protected] Abstract an enormous financial investment in hardware for training, using over 80000 CPU cores to run simultaneous instances Real-time Strategy (RTS) games provide a challenging en- of StarCraft II, 1200 Tensor Processor Units (TPUs) to train vironment for AI research, due to their large state and ac- the networks, as well as a large amount of infrastructure and tion spaces, hidden information, and real-time gameplay. Star- Craft II has become a new test-bed for deep reinforcement electricity to drive this large-scale computation. While Al- learning systems using the StarCraft II Learning Environment phaStar is estimated to be the strongest existing RTS AI agent (SC2LE). Recently the full game of StarCraft II has been ap- and was capable of beating many players at the Grandmas- proached with a complex multi-agent reinforcement learning ter rank on the StarCraft II ladder, it does not yet play at the (RL) system, however this is currently only possible with ex- level of the world’s best human players (e.g. in a tournament tremely large financial investments out of the reach of most setting). The creation of AlphaStar demonstrated that using researchers. In this paper we show progress on using varia- deep learning to tackle RTS AI is a powerful solution, how- tions of easier to use RL techniques, modified to accommo- ever applying it to the entire game as a whole is not an eco- date actions with multiple components used in the SC2LE.
    [Show full text]
  • Final Exam Review History of Science 150
    Final Exam Review History of Science 150 1. Format of the Exam 90 minutes, on canvas 12:25pm December 18. You are welcome to bring notes to the exam, so you could start by filling out this sheet with notes from lectures and the readings! Like the mid-term, the final exam will have two kinds of questions. 1) Multiple choice questions examining your knowledge of key concepts, terms, historical developments, and contexts 2) Short answer questions in which ask you to draw on things you’ve learned in the course (from lecture, readings, videos) to craft a short argument in a brief essay expressing your informed issue on a historical question 2. Sample Questions Multiple Choice: Mina Rees was involved in (and wrote about) which of the following computing projects? A) Silicon Valley start-ups in the dot-com period B) Charles Babbage’s Difference Engine C) Works Projects Administration Tables Project D) Federal funding for computing research after WWII Short Answer: (Your answers should be between 100-200 words, and keep to specifics (events, machines, developments, people) that demonstrate your knowledge of materials covered from the course) A) What are two historical factors important to the development of Silicon Valley’s technology industry after World War II? B) In what ways did the field of programming change (in terms of its status and workers) between World War II and the late 1960s? 3. Topics to Review: Below, is a list of ideas to review for the final exam, which covers material through the entire course. You should review in particular, lecture notes, O’Mara’s The Code and other course readings provided on Canvas.
    [Show full text]