Mechanochemical Actuators of Embryonic Epithelial Contractility

Total Page:16

File Type:pdf, Size:1020Kb

Mechanochemical Actuators of Embryonic Epithelial Contractility Mechanochemical actuators of embryonic epithelial contractility YongTae Kima,1, Melis Hazara, Deepthi S. Vijayraghavanb, Jiho Songa, Timothy R. Jacksonb, Sagar D. Joshib,2, William C. Messnerc,3,4, Lance A. Davidsond,4, and Philip R. LeDuce,4 aDepartment of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213; bDepartment of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260; cDepartments of Mechanical Engineering and Electrical and Computer Engineering and Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213; dDepartments of Bioengineering, Developmental Biology, and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260; and eDepartments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 Edited by Shu Chien, University of California, San Diego, La Jolla, CA, and approved August 18, 2014 (received for review March 20, 2014) Spatiotemporal regulation of cell contractility coordinates cell shape embryonic epithelium to the same degree as cell lysate (16). Ex- change to construct tissue architecture and ultimately directs the tracellular ATP has been shown to activate contraction in a range of morphology and function of the organism. Here we show that cell types from endothelial cells of the cardiovascular system to contractility responses to spatially and temporally controlled chem- skeletal muscle cells (17). Cells exposed to a stream of ATP for 10 s ical stimuli depend much more strongly on intercellular mechanical contract and subsequently relax over 3 min. Using this stimulation connections than on biochemical cues in both stimulated tissues and protocol, we identified a level of stimulation (50-μMATP)that adjacent cells. We investigate how the cell contractility is triggered consistently triggered contraction (Fig. S1) and produced distinct within an embryonic epithelial sheet by local ligand stimulation and patterns of local strain in the tissue (Fig. 1 C–E; for details on strain coordinates a long-range contraction response. Our custom micro- maps see Materials and Methods). The threshold level of ATP fluidic control system allows spatiotemporally controlled stimulation concentration does not depend on the stimulation duration as long with extracellular ATP, which results in locally distinct contractility as it is not longer than 20 s, which is a limitation due to the delay followed by mechanical strain pattern formation. The stimulation– between ATP exposure and the contraction response. The con- response circuit exposed here provides a better understanding of ENGINEERING traction response after 20 s causes initially adjacent cells to be how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple drawn into the stream and exposed to ATP, which complicates cells. These findings may enable one to create a biological actuator interpretations of the results due to additional cells being stimu- that actively drives morphogenesis. lated. We note that the stream delivered to the tissue was strictly laminar with sharp concentration gradients across the stream microfluidics | multicellular | mechanotransduction | signaling Significance BIOLOGY hysiological control systems have evolved diverse strategies to DEVELOPMENTAL Psense the environment, transduce signals, and actuate contrac- This study shows how cell contractility is triggered within an tile responses. One such strategy involves the actuation of non- embryonic epithelial sheet by local ligand stimulation and coor- muscle cell contractility to drive a wide range of developmental dinates a long-range contraction response. The stimulation– processes as well as normal physiological and pathological disease response circuit exposed here provides a better understanding of states (1–5). The contractile behaviors of cells and their inter- how morphogenetic processes integrate responses to stimulation actions in multicellular arrays are not only critical in shaping and and how intercellular responses are transmitted across multiple guiding tissue formation (e.g., epithelial folding) for the suc- cells. Understanding the systems-level behavior of biological sig- cessful outcome of development programs (6, 7), but also play naling networks may allow us to control biological actuators with a major role in the pathology of tumor growth, the invasion- engineered spatiotemporal stimulation. Our findings will provide metastasis cascade, wound healing, and tissue regeneration (8, 9). a better understanding of contractility-dependent morphogenetic From a signaling standpoint, embryonic development is a dy- movements as well as the intercellular communication pathways namic process where cells interact and coordinate force genera- critical during developmental biology, synthetic morphogenesis, tion as their identities are patterned by spatiotemporally applied and multicellular mechanotransduction signaling. chemical stimuli. There has been considerable debate over the effectiveness of intra- versus intercellular signaling during de- Author contributions: Y.K., W.C.M., L.A.D., and P.R.L. designed research; Y.K., M.H., D.S.V., – and J.S. performed research; Y.K., M.H., D.S.V., J.S., T.R.J., S.D.J., W.C.M., L.A.D., and P.R.L. velopment (10, 11); nevertheless, the cell cell signaling and the contributed new reagents/analytic tools; Y.K., M.H., D.S.V., J.S., T.R.J., W.C.M., L.A.D., and coordination of a variety of multicellular responses are known to P.R.L. analyzed data; S.D.J. and L.A.D. identified the use of extracellular ATP for inducing be mediated by gap-junction-dependent intercellular communi- contractility in Xenopus embryonic tissues; and Y.K., W.C.M., L.A.D., and P.R.L. wrote cation (12, 13). However, recent findings from studies of cell the paper. mechanics indicate that mechanical cues can be as potent as The authors declare no conflict of interest. chemical factors in directing cell differentiation and behaviors This article is a PNAS Direct Submission. and suggest a role in modulating signal transduction pathways 1Present address: The George W. Woodruff School of Mechanical Engineering, Wallace H. (14, 15). Less clear is whether signal transduction can be modu- Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotech- lated by mechanical connections during morphogenesis. nology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332. Results and Discussion 2Present address: American Air Liquide Inc., Delaware Research and Technology Center, Newark, DE 19702. To investigate the complex integrated response of a multicellular 3Present address: Department of Mechanical Engineering, Tufts University, Medford, system and investigate the mechanochemical response and actua- MA 02155. tion, we cultured an intact epithelial sheet adhered to a fibronectin 4To whom correspondence may be addressed. Email: [email protected], william.messner@ extracellular matrix substrate within a custom microfluidic chamber tufts.edu, or [email protected]. – and exposed a narrow band of 4 5 cells within the sheet to ATP This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. (Fig. 1 A and B). ATP can trigger contraction in the Xenopus 1073/pnas.1405209111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1405209111 PNAS Early Edition | 1of6 Downloaded by guest on October 2, 2021 Fig. 1. Understanding mechanochemical actuation through epithelial contractility in an X. laevis embryonic tissue. (A) Schematic and confocal image (front view) showing microfluidic stream of extracellular ATP applied to a Xenopus embryonic tissue. This stream profile was spatiotemporally controlled through our feedback microfluidic control of the inlet pressure at the streams (for the performance of our microfluidic control system see Movie S1)(40–42). Pho- tograph of the microfluidic device, in which a single AC tissue explant is being locally stimulated by the central stream bounded by culture media (DFA). Computation fluid dynamics simulation predicting flow patterns around a tissue model (Movie S2). The cells exposed to a stream of extracellular ATP contract whereas the neighboring cells stretch. (B) Microscope image of a Xenopus embryonic tissue with a gray stream indicating the location of ATP (for the contractility of the tissue see Movie S3). (Scale bar: 100 μm.) (C–E) Strain map responses of locally ATP stimulated Xenopus tissue indicating mechanical actuation at (C) 20-, (D) 60-, and (E) 100 s after 10-s ATP stimulation. The color maps overlay the corresponding microscope images of the tissue in the microfluidic channel and indicate the strain distribution in the tissue. (F) Strains at the middle section of the tissue perpendicular to the stream. The data for the black solid line correspond to the image in C, the red dashed line to D, and the blue dashed-dotted line to E. The gray rectangular area represents the location of the ATP stream that covers the tissue. (G–I) Strain map responses of locally ATP stimulated tissue modeled with FE analysis. G, H, and I attempt to simulate C, D, and E, respectively. (J and K) Time-lapse images showing multiple cells of embryonic epithelial sheet in a tissue explant with ATP stream (J)and the strains of the cells (K) on the tissue (Movie S4). A pulse ATP stream was applied at 0 s and lasted for 45 s. (Scale bar: 50 μm.) Strains
Recommended publications
  • Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli
    RESEARCH ARTICLE Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli Sarah Jean Boeddeker1*, Dunja Maria Baston-Buest1, Tanja Fehm2, Jan Kruessel1, Alexandra Hess1 1 Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany, 2 Department of Obstetrics and Gynecology, Medical Center University of Duesseldorf, Duesseldorf, Germany a11111 * [email protected] Abstract Human embryo invasion and implantation into the inner wall of the maternal uterus, the en- OPEN ACCESS dometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the en- Citation: Boeddeker SJ, Baston-Buest DM, Fehm T, dometrial epithelial layer was already correlated with the programmed cell death, the role of Kruessel J, Hess A (2015) Decidualization and apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The Syndecan-1 Knock Down Sensitize Endometrial aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize Stromal Cells to Apoptosis Induced by Embryonic Stimuli. PLoS ONE 10(4): e0121103. doi:10.1371/ if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced journal.pone.0121103 by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stro- Academic Editor: Zeng-Ming Yang, South China mal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock Agricultural University, CHINA down (KdS1), and second to further decidualize the cells with progesterone. As a replace- Received: November 12, 2014 ment for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming Accepted: February 9, 2015 growth factor-β1 and anti-Fas antibody to mimic the embryo contact.
    [Show full text]
  • Organoid Systems to Study the Human Female Reproductive Tract and Pregnancy
    Cell Death & Differentiation (2021) 28:35–51 https://doi.org/10.1038/s41418-020-0565-5 REVIEW ARTICLE Organoid systems to study the human female reproductive tract and pregnancy 1 1 1,2 Lama Alzamil ● Konstantina Nikolakopoulou ● Margherita Y. Turco Received: 4 February 2020 / Revised: 24 April 2020 / Accepted: 15 May 2020 / Published online: 3 June 2020 © The Author(s) 2020. This article is published with open access Abstract Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. 1234567890();,: 1234567890();,: Facts Open questions ● The efficient and coordinated function of the FRT is ● How well do FRT organoids model the cellular essential for reproduction and women’s wellbeing. heterogeneity of the tissue of origin? Perturbations in these processes are the cause of a range ● Are the different cell states across the menstrual cycle of disorders from infertility to cancer. represented in the FRT organoid models? ● Organoids can be derived from healthy and pathological ● What are the signaling pathways and transcriptional tissues of the FRT.
    [Show full text]
  • The Pseudopregnant Uterus P
    Viability of \g=a\-momorcharin-treatedmouse blastocysts in the pseudopregnant uterus P. P. L. Tam, W. Y. Chan and H. W. Yeung Departments of Anatomy and *Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Summary. Mouse morulae and early blastocysts developed normally to the late blasto- cyst stage in the presence of \g=a\-momorcharinin culture. When these embryos were transferred to a pseudopregnant uterus, they showed a poor ability to induce the decidual reaction and many failed to implant. Those that had implanted showed retarded embryonic development and many implantation sites contained only tropho- blastic giant cells and extraembryonic membranes. Implantation of blastocysts was inhibited when the recipient animal was given \g=a\-momorcharinat the time of embryo transfer. We suggest that termination of early pregnancy by \g=a\-momorcharinis the result of the deleterious effect of the protein on the implanting embryos and the endo- metrium. Introduction A plant protein, -trichosanthin, which is isolated from Trichosanthes kirilowii has been used clinically in China for the termination of pregnancy. Although this agent is very effective in inducing mid-term abortion, side effects such as induced hypersensitivity are often observed in the treated women (Anon, 1976; Zhong & Wang, 1983). Recent effort is directed towards the search for alternative abortifacients as well as the use of these agents in early pregnancy. In our laboratory, a glycoprotein named a-momorcharin was purified from Momordica charantia which is related botanically to Trichosanthes. When a-momorcharin was administered intraperitoneally to pregnant mice on Days 1-6 of gestation, the incidence of implantation was significantly reduced (Law, Tarn & Yeung, 1983 ; Tarn, Law & Yeung, 1984).
    [Show full text]
  • Pregnancy-Related Extracellular Vesicles Revisited
    International Journal of Molecular Sciences Review Pregnancy-Related Extracellular Vesicles Revisited Carmen Elena Condrat 1,2, Valentin Nicolae Varlas 3,* , Florentina Duică 2, Panagiotis Antoniadis 4 , 2 2,5 2,6,7 5, Cezara Alina Danila , Dragos Cretoiu , Nicolae Suciu , Sanda Maria Cret, oiu * and Silviu Cristian Voinea 8 1 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; [email protected] 2 Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; fl[email protected] (F.D.); [email protected] (C.A.D.); [email protected] (D.C.); [email protected] (N.S.) 3 Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 011171 Bucharest, Romania 4 Division of Molecular Diagnostics and Biotechnology, Antisel RO SRL, 024095 Bucharest, Romania; [email protected] 5 Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 6 Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 7 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania 8 Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania; [email protected] Citation: Condrat, C.E.; Varlas, V.N.; * Correspondence: [email protected] (V.N.V.); [email protected] (S.M.C.) Duic˘a,F.; Antoniadis, P.; Danila, C.A.; Cretoiu, D.; Suciu, N.; Cret,oiu, S.M.; Abstract: Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 µm in diameter Voinea, S.C.
    [Show full text]
  • 57 Clinical Immunology Laboratory
    Clinical Immunology Laboratory TEST: Decidualization Score test PRINCIPLE: Molecular testing of endometrial biopsy samples for women with reproductive failures is important for evaluation of uterine receptivity and for a personalized therapeutic strategy [1, 2]. The test is based on molecular analysis of six factors that are associated and essential for decidualization: FOXO1, GZMB, IL15, SCNN1A, SGK1 and SLC2A1 [3-7]. The Decidualization score reflects how many of these factors are expressed at normal range in the tested sample. The Normal Decidualization score is “>4”. The score “4” is Borderline Normal. The score“<4 is Low Decidualization score. This test (Decidualization Score test) helps to determine if the molecular profile in endometrium is implantation friendly and could be used for selecting patients that require therapeutic actions to improve endometrial condition before IVF –ET procedure. SPECIMEN REQUIREMENTS: Endometrial biopsy sample obtained according to a standard procedure with a Pipelle catheter or similar. Natural cycle: take the biopsy 7 to 9 days after the LH surge. The day of the LH surge is considered as LH+0, and the biopsy will be taken at LH+7-9. The best way to identify the LH surge is with the urinary LH tests. Hormone Replacement Therapy cycle: upon initiation of an HRT cycle, take the biopsy after 5 full days of progesterone treatment. The day for the first intake of progesterone is considered as P+0 and the day of the biopsy is P+5. About 30-50 milligrams of tissue is required for analysis (for illustration purposes, this equates to one or two cubes of approximately 3x3 millimeters).
    [Show full text]
  • The Role of Endometrial Stem Cells in Recurrent Miscarriage
    REPRODUCTIONREVIEW Success after failure: the role of endometrial stem cells in recurrent miscarriage Emma S Lucas1,2, Nigel P Dyer3, Katherine Fishwick1, Sascha Ott2,3 and Jan J Brosens1,2 1Division of Biomedical Sciences, Warwick Medical School, Coventry, UK, 2Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK and 3Warwick Systems Biology Centre, University of Warwick, Coventry, UK Correspondence should be addressed to J Brosens; Email: [email protected] Abstract Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure before conception. Reproduction (2016) 152 R159–R166 Introduction Successful implantation of a human embryo is commonly date (Fragouli et al. 2013), each implanting blastocyst attributed to binary variables; i.e. nidation of a ‘normal’, is arguably unique. Furthermore, transient aneuploidy but not an ‘abnormal’, embryo in a ‘receptive’, but during development may not be unequivocally as not a ‘non-receptive’, endometrium is required for ‘bad’ as has been intuitively presumed because of the a successful pregnancy.
    [Show full text]
  • Intercellular Junctions Between Decidual Cells in the Growing
    BIOLOGY OF REPRODUCTION 15, 593-603 (1976) Intercellular Junctions Between Decidual Cells in the Growing Deciduoma of the Pseudopregnant Rat Uterus’ RUTH G. KLEINFELD, HENRY A. MORROW and VINCENT J. DeFEO Department of Anatomy and Reproductive Biology, The John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822 Downloaded from https://academic.oup.com/biolreprod/article/15/5/593/2768190 by guest on 01 October 2021 ABSTRACT The appearance of gap junctions between decidual cells and the restructuring of the intercellular matrix of the endometrium was studied by electron microscopy in the developing primary deciduoma of the pseudopregnant rat uterus. Decidualization was induced by intraluminal injection of Hanks balanced salt solution at the time of peak sensitivity (Day 4). The progression of decidualization was followed through Day 9 of pseudopregnancy. At the time of sensitivity the periluminal stromal cells of the antimesometrial region are surrounded by an abundant collagenous matrix and there are relatively few contacts between processes of neighboring cells. When junctions exist they are of the maculae adherentes type. On the day following the deciduogenic stimulus (Day 5) contacts between cells are numerous and gap junctions are present. The presence of gap junctions between the early differentiating decidual cells suggests that cell to cell communication may be involved in the spread of decidualization. As decidualization progresses a rapid reduction in the amount of intercellular matrix occurs. With continued growth extensive infoldin and interdigitations of the plasma membranes develop between adjoining decidual cells forming a complex membranous labyrinth. Numerous gap junctions are present involving extensive areas of the cell surfaces.
    [Show full text]
  • Embryo–Epithelium Interactions During Implantation at a Glance John D
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 15-22 doi:10.1242/jcs.175943 SPECIAL ISSUE 3D CELL BIOLOGY CELL SCIENCE AT A GLANCE Embryo–epithelium interactions during implantation at a glance John D. Aplin* and Peter T. Ruane ABSTRACT specific adhesion molecules. We compare the rodent data with our At implantation, with the acquisition of a receptive phenotype in the much more limited knowledge of the human system, where direct uterine epithelium, an initial tenuous attachment of embryonic mechanistic evidence is hard to obtain. In the accompanying poster, – trophectoderm initiates reorganisation of epithelial polarity to enable we represent the embryo epithelium interactions in humans and stable embryo attachment and the differentiation of invasive laboratory rodents, highlighting similarities and differences, as well as trophoblasts. In this Cell Science at a Glance article, we describe depict some of the key cell biological events that enable interstitial cellular and molecular events during the epithelial phase of implantation to occur. implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal KEY WORDS: Adhesion, Blastocyst, Endometrium, Epithelium, regulators estrogen and progesterone that coordinate alterations in Trophoblast epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell Introduction interactions that occur during implantation, before considering Implantation is the stage of pregnancy at which stable adhesion is initiated between the embryo and maternal tissue. Blastocyst-stage embryos hatch from the zona pellucida, exposing trophectoderm – Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 which forms the primary interface with the endometrial epithelium.
    [Show full text]
  • Uterine Activin Receptor-Like Kinase 5 Is Crucial for Blastocyst Implantation and Placental Development
    Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development Jia Penga,b,c, Diana Monsivaisa,c, Ran Youa, Hua Zhonga, Stephanie A. Pangasa,c,d, and Martin M. Matzuka,b,c,d,e,1 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; cCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M. Matzuk, July 23, 2015 (sent for review May 5, 2015; reviewed by Thomas E. Spencer and Haibin Wang) Members of the transforming growth factor β (TGF-β) superfamily and secondary trophoblast giant cells. Thus, the mature placenta are key regulators in most developmental and physiological pro- is composed of the outer maternal decidua, the middle junc- cesses. However, the in vivo roles of TGF-β signaling in female tional zone (including spongiotrophoblasts and trophoblast giant reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) cells), and the innermost labyrinth (3). At midgestation, uterine is the major type 1 receptor for the TGF-β subfamily. Absence of natural killer (uNK) cells are the most abundant subset of lym- ALK5 leads to early embryonic lethality because of severe defects phocytes found in implantation sites (4). In mice, a few uNK cells in vascular development. In this study, we conditionally ablated are first detected at 5 dpc, the onset of decidualization, and uterine ALK5 using progesterone receptor-cre mice to define the substantially increase in the decidua basalis until midgestation physiological roles of ALK5 in female reproduction.
    [Show full text]
  • Uterine Disorders and Pregnancy Complications: Insights from Mouse Models
    Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim, Haibin Wang J Clin Invest. 2010;120(4):1004-1015. https://doi.org/10.1172/JCI41210. Review Series Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications. Find the latest version: https://jci.me/41210/pdf Review series Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim1 and Haibin Wang2 1Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul, Korea. 2State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debat- able whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipu- lated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identi- fied many similarities in female reproduction between the two species.
    [Show full text]
  • Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications
    cells Review Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications Hans-Werner Denker Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; [email protected] Abstract: The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field. Keywords: stem cells; embryoids; blastoids; gastruloids; blastocyst; expanded potential stem cells; development; morphogenesis; self-organization; ethics Citation: Denker, H.-W. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical 1. Introduction Implications.
    [Show full text]
  • European Society of Human Reproduction and Embryology
    European Society of Human Reproduction and Embryology COURSE 4 Implantation Special Interest Group Early Pregnancy Sepcial Interest Group Endometriosis and Endometrium 18 June 2006 Prague - Czech Republic Contents Program page 2 Submitted contributions Mediators of implantation - P. Bischof (CH) page 3 Molecular mechanisms of decidualization - J. Brosens (UK) page 7 Genomics of human endometrial receptivity - J. Horcajadas (E) page 12 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) page 17 Time of implantation - D. Baird (USA) page 21 Implantation and recurrent miscarriage, clinical aspects – S. Quenby (UK) page 30 Myometrial contractility and implantation - D. De Ziegler (CH) (UK) page 34 1 Course 4 - A joint pre-congress course organised by the Special Interest Groups Early Pregnancy and the Special Interest Group Endometriosis and Endometrium “Implantation” PROGRAM Course Coordinators: SIG Early Pregnancy: E. Jauniaux (UK) N. Exalto (NL), SIG Endometrium and Endometriosis: T. D’Hooghe (B), J. Horcajadas (E) Course description: An update on basic and clinical aspects of implantation. 09.00 - 09.45 Mediators of implantation - P. Bischof (CH) 09.45 - 10.30 Endometrial cell-surface barrier - TBA 10.30 - 11.00 Coffee break 11.00 - 11.30 Molecular mechanisms of decidualization - J. Brosens (UK) 11.30 - 12.00 Genomics of human endometrial receptivity - J. Horcajadas (E) 12.00 - 12.30 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) 12.30 - 13.30 Lunch 13.30 - 14.15 Time of implantation - D. Baird (USA) 14.15 - 15.00 Role of ultrasound in endometrial evaluation - D. Timmerman (B) 15.00 - 15.30 Coffee break 15.30 - 16.15 Implantation and recurrent miscarriage, clinical aspects – S.
    [Show full text]