Intercellular Junctions Between Decidual Cells in the Growing

Total Page:16

File Type:pdf, Size:1020Kb

Intercellular Junctions Between Decidual Cells in the Growing BIOLOGY OF REPRODUCTION 15, 593-603 (1976) Intercellular Junctions Between Decidual Cells in the Growing Deciduoma of the Pseudopregnant Rat Uterus’ RUTH G. KLEINFELD, HENRY A. MORROW and VINCENT J. DeFEO Department of Anatomy and Reproductive Biology, The John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822 Downloaded from https://academic.oup.com/biolreprod/article/15/5/593/2768190 by guest on 01 October 2021 ABSTRACT The appearance of gap junctions between decidual cells and the restructuring of the intercellular matrix of the endometrium was studied by electron microscopy in the developing primary deciduoma of the pseudopregnant rat uterus. Decidualization was induced by intraluminal injection of Hanks balanced salt solution at the time of peak sensitivity (Day 4). The progression of decidualization was followed through Day 9 of pseudopregnancy. At the time of sensitivity the periluminal stromal cells of the antimesometrial region are surrounded by an abundant collagenous matrix and there are relatively few contacts between processes of neighboring cells. When junctions exist they are of the maculae adherentes type. On the day following the deciduogenic stimulus (Day 5) contacts between cells are numerous and gap junctions are present. The presence of gap junctions between the early differentiating decidual cells suggests that cell to cell communication may be involved in the spread of decidualization. As decidualization progresses a rapid reduction in the amount of intercellular matrix occurs. With continued growth extensive infoldin and interdigitations of the plasma membranes develop between adjoining decidual cells forming a complex membranous labyrinth. Numerous gap junctions are present involving extensive areas of the cell surfaces. By Day 9 the antimesometrial region consists of large, polyploid, glycogen-rich decidual cells with extensive surface info!din that are joined by gap junctions. INTRODUCTION h later. This is a transitory state lasting only a Preparation of the rat uterus for ovum few hours. In normal pregnancy and pseudo- implantation involves specific interactions of pregnancy this occurs on Day 4 (DeFeo, 1967; the two ovarian hormones, progesterone and Psychoyos, 1973). At this time the uterus is estrogen (for reviews see: DeFeo, 1967; Psy- capable of responding to a variety of stimuli choyos, 1973; Glasser and Clark, 1975). The which elicit the decidual response. uterus of the rat and of many other mammals is Decidualization, a specific response of the normally not receptive to ovum implantation progestational endometrium, involves an exten- and must undergo specific hormone dependent sive reorganization of the endometrial cell changes before it develops a sensitive or recep- populations, analogous in many ways to em- tive state. Experiments with ovariectomized bryonic organogenesis. A period of rapid rats have established that uterine sensitivity growth transforms the mesenchymal-like stro- (the ability to decidualize in response to an mal cells into a densely confluent population of implanting blastocyst) depends on the comple- epithelioid cells. RNA and protein synthesis tion of a basic hormone sequence: daily expo- increase, DNA replication and mitosis are great- sure to progesterone for at least 48 h and the ly stimulated, cell migrations occur and the presence of minute amounts of estrogen at the stromal cells differentiate into large polyploid end of this period (Tachi et al., 1972; Psy- cells filled with glycogen and lipid. Within five choyos, 1973). When this sequence is com- days the uterine weight may increase more than pleted, a state of peak sensitivity occurs 20-24 10-fold (DeFeo, 1967; Finn, 1971). Decidualization involves an orderly coordi- nated progression of stromal cell differentiation Accepted July 29, 1976. starting with a population of periluminal stro- Received June11, 1976. ma! cells at the antimesometrial pole, then ‘This work was supported in part by National spreading toward the peripheral regions and the Institutes of Health grant HD 02399, a grant from the Ford Foundation 660-0202A and a research grant mesometrial pole as more stromal cells divide from the University of Hawaii. and differentiate. In each zone, cell division 593 594 KLEINFELD ET AL. precedes cell differentiation. When fully differ- tion on the day of estrus, Day 0 (DeFeo, 1%6). The entiated, the decidual cells stop dividing and decidual response was induced between 12 noon and 1 pm on Day 4 of pseudopregnancy by injection of eventually degenerate. The sequential pattern 0.1 ml of Hanks balanced salt solution (Cibco) into of cellular changes suggests that cell to cell the tubal end of the uterine lumen of each cornu interactions are involved. under ether anesthesia. The uterus of anesthetized rats A consistent feature of decidual tissue, was perfused via the dorsal aorta on Days 4, 5, 7 or 9 of pseudopregnancy with 3 percent glutaraldehyde in demonstrated by electron microscopy, is the 0.1 M phosphate buffer at pH 7.2. The uterine horns presence of junctional complexes between de- were removed and cross sectional slices (0.5-1 mm cidual cells (Jollie and Bencosme, 1965; Enders thick) were immersed in the buffered glutaraldehyde Downloaded from https://academic.oup.com/biolreprod/article/15/5/593/2768190 by guest on 01 October 2021 and Schlafke, 1967; Finn and Lawn, 1967; solution for 24 h at 4#{176}C.The tissue samples were Lawn et al., 1971; Kleinfeld and DeFeo, 1971). washed several times in the same buffer and postfixed for 4-6 h in 1 percent 0s04 in 0.1 M phosphate Gap junctions between decidual cells (earlier buffer pH 7.2, dehydrated in a graded series of ethanol referred to as tight junctions) have been noted solutions and embedded in Epon 812. in the pregnant mouse uterus (Finn and Lawn, Lanthanum was used according to the procedure of 1967; Finn, 1971), in the pseudopregnant rat Revel and Karnovsky (1967) to outline the extracellu- lar space and delineate the specialized gap junctions. deciduoma (Kleinfeld and DeFeo, 1971), and The uterus was perfused with 3 percent glutaraldehyde between predecidual cells in the human endo- buffered with s-collidine containing a final concentra- metrium during the late luteal phase of the tion of 1 percent lanthanum nitrate. The tissue was menstrual cycle (Lawn et a!., 1971). Gap then processed in a manner similar to that of uterine junctions are regions of membrane specializa- tissue not treated with lanthanum except that 1 percent lanthanum nitrate was added to all solutions tion where adjacent cell membranes are closely up until dehydration. apposed (2-3 nm) and are believed to be the To select specific areas of the uterus semithin structural basis of a form of communication sections (1 Mm) were stained with toluidine blue (0.5 between cells allowing free passage of ions, percent toluidene blue in 2.5 percent sodium car- metabolites and other low molecular weight bonate) and blocks were trimmed accordingly. Thin sections (silver to gold) cut with a diamond knife were substances (Lowenstein, 1968; Bennett, 1973). mounted on 200 mesh grids and stained with 3 There is currently much interest in the role percent aqueous uranyl acetate followed by lead such communicating junctions play in facilitat- citrate (leynolds, 1963). The sections prepared from ing synchronous responses to hormonal signals the lanthanum experiments were lightly stained with lead citrate (Venable and Coggeshall, 1965). Sections (Bergman, 1968; Merck et a!., 1972, 1973; were scanned in a Phillips EM 300 electron microscope Albertini and Anderson, 1974) or the coordina- at 60KV. tion of growth and differentiation (Gilula et al., 1972; Lowenstein, 1973). RESULTS The fine structure of decidual cells in the pseudopregnant rat was previously described by The cells of the antimesometrial region of Jollie and Bencosme (1965). This report de- the uterus are the first to respond to a scribes the fine structural features of intercellu- deciduogenic stimulus. There is a wave-like lar contacts that exist between stromal cells and progression of mitotic activity and differentia- decidual cells in the developing deciduoma of tion starting with the periluminal stromal cells the rat from Days 4 to 9 of pseudopregnancy. then spreading toward the peripheral region as Particular attention is focused on 1) the time of more cells become involved. The antimesome- appearance of gap junctions and 2) the exten- trial region reaches peak development and sive increase in cell surface area of decidual cells growth by Day 9, at which time cells in the in relation to the reduction of the intercellular inner region start to degenerate. Mesometrial matrix and free space. decidualization starts on Day 7 and reaches peak development by Days 11-13. MATERIALS AND METHODS The endometrial stromal cells resemble em- Three month old Holtzmann virgin female rats bryonic mesenchyme, consisting of irregular were made pseudopregnant by vaginal-cervical stimula- stellate cells with large ovoid nuclei and rela- All electron micrographs are taken from the antimesometrial pole of the endometrium. FIGS. 1-5. Day 4 of pseudopregnancy prior to administration of the deciduogenic stimulus. FIG. 1. Stromal cells from the periluminal area are larger, more rounded with lobate processes which extend out in all directions. X5,100. INTERCELLULAR JUNCTIONS BETWEEN DECIDUAL CELLS 595 Downloaded from https://academic.oup.com/biolreprod/article/15/5/593/2768190 by guest on 01 October 2021 .4 ‘0 I 4: rr ; .‘ A -. .,, - 4 :‘ 7 #{149}.. 0 W .L. _;--L, FIG. 2. A contact of the macula adherens type junction between two periluminal stromal cells. X 38,200. FIG. 3. An elongated area of contact between two periluminal stromal cells resembling the zonula adherens type junction. X40,200. FIG. 4. Stromal cells just below the periluminal area resemble active fibroblasts and are surrounded by an abundant collagenous matrix. X 5,300. FIG. 5. A portion of a stromal cell showing a newly polymerized collagen fibril at the surface of a small recess. X35,500.
Recommended publications
  • Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli
    RESEARCH ARTICLE Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli Sarah Jean Boeddeker1*, Dunja Maria Baston-Buest1, Tanja Fehm2, Jan Kruessel1, Alexandra Hess1 1 Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany, 2 Department of Obstetrics and Gynecology, Medical Center University of Duesseldorf, Duesseldorf, Germany a11111 * [email protected] Abstract Human embryo invasion and implantation into the inner wall of the maternal uterus, the en- OPEN ACCESS dometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the en- Citation: Boeddeker SJ, Baston-Buest DM, Fehm T, dometrial epithelial layer was already correlated with the programmed cell death, the role of Kruessel J, Hess A (2015) Decidualization and apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The Syndecan-1 Knock Down Sensitize Endometrial aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize Stromal Cells to Apoptosis Induced by Embryonic Stimuli. PLoS ONE 10(4): e0121103. doi:10.1371/ if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced journal.pone.0121103 by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stro- Academic Editor: Zeng-Ming Yang, South China mal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock Agricultural University, CHINA down (KdS1), and second to further decidualize the cells with progesterone. As a replace- Received: November 12, 2014 ment for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming Accepted: February 9, 2015 growth factor-β1 and anti-Fas antibody to mimic the embryo contact.
    [Show full text]
  • Organoid Systems to Study the Human Female Reproductive Tract and Pregnancy
    Cell Death & Differentiation (2021) 28:35–51 https://doi.org/10.1038/s41418-020-0565-5 REVIEW ARTICLE Organoid systems to study the human female reproductive tract and pregnancy 1 1 1,2 Lama Alzamil ● Konstantina Nikolakopoulou ● Margherita Y. Turco Received: 4 February 2020 / Revised: 24 April 2020 / Accepted: 15 May 2020 / Published online: 3 June 2020 © The Author(s) 2020. This article is published with open access Abstract Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. 1234567890();,: 1234567890();,: Facts Open questions ● The efficient and coordinated function of the FRT is ● How well do FRT organoids model the cellular essential for reproduction and women’s wellbeing. heterogeneity of the tissue of origin? Perturbations in these processes are the cause of a range ● Are the different cell states across the menstrual cycle of disorders from infertility to cancer. represented in the FRT organoid models? ● Organoids can be derived from healthy and pathological ● What are the signaling pathways and transcriptional tissues of the FRT.
    [Show full text]
  • The Pseudopregnant Uterus P
    Viability of \g=a\-momorcharin-treatedmouse blastocysts in the pseudopregnant uterus P. P. L. Tam, W. Y. Chan and H. W. Yeung Departments of Anatomy and *Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Summary. Mouse morulae and early blastocysts developed normally to the late blasto- cyst stage in the presence of \g=a\-momorcharinin culture. When these embryos were transferred to a pseudopregnant uterus, they showed a poor ability to induce the decidual reaction and many failed to implant. Those that had implanted showed retarded embryonic development and many implantation sites contained only tropho- blastic giant cells and extraembryonic membranes. Implantation of blastocysts was inhibited when the recipient animal was given \g=a\-momorcharinat the time of embryo transfer. We suggest that termination of early pregnancy by \g=a\-momorcharinis the result of the deleterious effect of the protein on the implanting embryos and the endo- metrium. Introduction A plant protein, -trichosanthin, which is isolated from Trichosanthes kirilowii has been used clinically in China for the termination of pregnancy. Although this agent is very effective in inducing mid-term abortion, side effects such as induced hypersensitivity are often observed in the treated women (Anon, 1976; Zhong & Wang, 1983). Recent effort is directed towards the search for alternative abortifacients as well as the use of these agents in early pregnancy. In our laboratory, a glycoprotein named a-momorcharin was purified from Momordica charantia which is related botanically to Trichosanthes. When a-momorcharin was administered intraperitoneally to pregnant mice on Days 1-6 of gestation, the incidence of implantation was significantly reduced (Law, Tarn & Yeung, 1983 ; Tarn, Law & Yeung, 1984).
    [Show full text]
  • Pregnancy-Related Extracellular Vesicles Revisited
    International Journal of Molecular Sciences Review Pregnancy-Related Extracellular Vesicles Revisited Carmen Elena Condrat 1,2, Valentin Nicolae Varlas 3,* , Florentina Duică 2, Panagiotis Antoniadis 4 , 2 2,5 2,6,7 5, Cezara Alina Danila , Dragos Cretoiu , Nicolae Suciu , Sanda Maria Cret, oiu * and Silviu Cristian Voinea 8 1 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; [email protected] 2 Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; fl[email protected] (F.D.); [email protected] (C.A.D.); [email protected] (D.C.); [email protected] (N.S.) 3 Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 011171 Bucharest, Romania 4 Division of Molecular Diagnostics and Biotechnology, Antisel RO SRL, 024095 Bucharest, Romania; [email protected] 5 Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 6 Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 7 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania 8 Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania; [email protected] Citation: Condrat, C.E.; Varlas, V.N.; * Correspondence: [email protected] (V.N.V.); [email protected] (S.M.C.) Duic˘a,F.; Antoniadis, P.; Danila, C.A.; Cretoiu, D.; Suciu, N.; Cret,oiu, S.M.; Abstract: Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 µm in diameter Voinea, S.C.
    [Show full text]
  • 57 Clinical Immunology Laboratory
    Clinical Immunology Laboratory TEST: Decidualization Score test PRINCIPLE: Molecular testing of endometrial biopsy samples for women with reproductive failures is important for evaluation of uterine receptivity and for a personalized therapeutic strategy [1, 2]. The test is based on molecular analysis of six factors that are associated and essential for decidualization: FOXO1, GZMB, IL15, SCNN1A, SGK1 and SLC2A1 [3-7]. The Decidualization score reflects how many of these factors are expressed at normal range in the tested sample. The Normal Decidualization score is “>4”. The score “4” is Borderline Normal. The score“<4 is Low Decidualization score. This test (Decidualization Score test) helps to determine if the molecular profile in endometrium is implantation friendly and could be used for selecting patients that require therapeutic actions to improve endometrial condition before IVF –ET procedure. SPECIMEN REQUIREMENTS: Endometrial biopsy sample obtained according to a standard procedure with a Pipelle catheter or similar. Natural cycle: take the biopsy 7 to 9 days after the LH surge. The day of the LH surge is considered as LH+0, and the biopsy will be taken at LH+7-9. The best way to identify the LH surge is with the urinary LH tests. Hormone Replacement Therapy cycle: upon initiation of an HRT cycle, take the biopsy after 5 full days of progesterone treatment. The day for the first intake of progesterone is considered as P+0 and the day of the biopsy is P+5. About 30-50 milligrams of tissue is required for analysis (for illustration purposes, this equates to one or two cubes of approximately 3x3 millimeters).
    [Show full text]
  • The Role of Endometrial Stem Cells in Recurrent Miscarriage
    REPRODUCTIONREVIEW Success after failure: the role of endometrial stem cells in recurrent miscarriage Emma S Lucas1,2, Nigel P Dyer3, Katherine Fishwick1, Sascha Ott2,3 and Jan J Brosens1,2 1Division of Biomedical Sciences, Warwick Medical School, Coventry, UK, 2Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK and 3Warwick Systems Biology Centre, University of Warwick, Coventry, UK Correspondence should be addressed to J Brosens; Email: [email protected] Abstract Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure before conception. Reproduction (2016) 152 R159–R166 Introduction Successful implantation of a human embryo is commonly date (Fragouli et al. 2013), each implanting blastocyst attributed to binary variables; i.e. nidation of a ‘normal’, is arguably unique. Furthermore, transient aneuploidy but not an ‘abnormal’, embryo in a ‘receptive’, but during development may not be unequivocally as not a ‘non-receptive’, endometrium is required for ‘bad’ as has been intuitively presumed because of the a successful pregnancy.
    [Show full text]
  • Embryo–Epithelium Interactions During Implantation at a Glance John D
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 15-22 doi:10.1242/jcs.175943 SPECIAL ISSUE 3D CELL BIOLOGY CELL SCIENCE AT A GLANCE Embryo–epithelium interactions during implantation at a glance John D. Aplin* and Peter T. Ruane ABSTRACT specific adhesion molecules. We compare the rodent data with our At implantation, with the acquisition of a receptive phenotype in the much more limited knowledge of the human system, where direct uterine epithelium, an initial tenuous attachment of embryonic mechanistic evidence is hard to obtain. In the accompanying poster, – trophectoderm initiates reorganisation of epithelial polarity to enable we represent the embryo epithelium interactions in humans and stable embryo attachment and the differentiation of invasive laboratory rodents, highlighting similarities and differences, as well as trophoblasts. In this Cell Science at a Glance article, we describe depict some of the key cell biological events that enable interstitial cellular and molecular events during the epithelial phase of implantation to occur. implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal KEY WORDS: Adhesion, Blastocyst, Endometrium, Epithelium, regulators estrogen and progesterone that coordinate alterations in Trophoblast epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell Introduction interactions that occur during implantation, before considering Implantation is the stage of pregnancy at which stable adhesion is initiated between the embryo and maternal tissue. Blastocyst-stage embryos hatch from the zona pellucida, exposing trophectoderm – Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 which forms the primary interface with the endometrial epithelium.
    [Show full text]
  • Uterine Activin Receptor-Like Kinase 5 Is Crucial for Blastocyst Implantation and Placental Development
    Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development Jia Penga,b,c, Diana Monsivaisa,c, Ran Youa, Hua Zhonga, Stephanie A. Pangasa,c,d, and Martin M. Matzuka,b,c,d,e,1 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; cCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M. Matzuk, July 23, 2015 (sent for review May 5, 2015; reviewed by Thomas E. Spencer and Haibin Wang) Members of the transforming growth factor β (TGF-β) superfamily and secondary trophoblast giant cells. Thus, the mature placenta are key regulators in most developmental and physiological pro- is composed of the outer maternal decidua, the middle junc- cesses. However, the in vivo roles of TGF-β signaling in female tional zone (including spongiotrophoblasts and trophoblast giant reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) cells), and the innermost labyrinth (3). At midgestation, uterine is the major type 1 receptor for the TGF-β subfamily. Absence of natural killer (uNK) cells are the most abundant subset of lym- ALK5 leads to early embryonic lethality because of severe defects phocytes found in implantation sites (4). In mice, a few uNK cells in vascular development. In this study, we conditionally ablated are first detected at 5 dpc, the onset of decidualization, and uterine ALK5 using progesterone receptor-cre mice to define the substantially increase in the decidua basalis until midgestation physiological roles of ALK5 in female reproduction.
    [Show full text]
  • Uterine Disorders and Pregnancy Complications: Insights from Mouse Models
    Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim, Haibin Wang J Clin Invest. 2010;120(4):1004-1015. https://doi.org/10.1172/JCI41210. Review Series Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications. Find the latest version: https://jci.me/41210/pdf Review series Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim1 and Haibin Wang2 1Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul, Korea. 2State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debat- able whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipu- lated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identi- fied many similarities in female reproduction between the two species.
    [Show full text]
  • Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications
    cells Review Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications Hans-Werner Denker Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; [email protected] Abstract: The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field. Keywords: stem cells; embryoids; blastoids; gastruloids; blastocyst; expanded potential stem cells; development; morphogenesis; self-organization; ethics Citation: Denker, H.-W. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical 1. Introduction Implications.
    [Show full text]
  • European Society of Human Reproduction and Embryology
    European Society of Human Reproduction and Embryology COURSE 4 Implantation Special Interest Group Early Pregnancy Sepcial Interest Group Endometriosis and Endometrium 18 June 2006 Prague - Czech Republic Contents Program page 2 Submitted contributions Mediators of implantation - P. Bischof (CH) page 3 Molecular mechanisms of decidualization - J. Brosens (UK) page 7 Genomics of human endometrial receptivity - J. Horcajadas (E) page 12 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) page 17 Time of implantation - D. Baird (USA) page 21 Implantation and recurrent miscarriage, clinical aspects – S. Quenby (UK) page 30 Myometrial contractility and implantation - D. De Ziegler (CH) (UK) page 34 1 Course 4 - A joint pre-congress course organised by the Special Interest Groups Early Pregnancy and the Special Interest Group Endometriosis and Endometrium “Implantation” PROGRAM Course Coordinators: SIG Early Pregnancy: E. Jauniaux (UK) N. Exalto (NL), SIG Endometrium and Endometriosis: T. D’Hooghe (B), J. Horcajadas (E) Course description: An update on basic and clinical aspects of implantation. 09.00 - 09.45 Mediators of implantation - P. Bischof (CH) 09.45 - 10.30 Endometrial cell-surface barrier - TBA 10.30 - 11.00 Coffee break 11.00 - 11.30 Molecular mechanisms of decidualization - J. Brosens (UK) 11.30 - 12.00 Genomics of human endometrial receptivity - J. Horcajadas (E) 12.00 - 12.30 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) 12.30 - 13.30 Lunch 13.30 - 14.15 Time of implantation - D. Baird (USA) 14.15 - 15.00 Role of ultrasound in endometrial evaluation - D. Timmerman (B) 15.00 - 15.30 Coffee break 15.30 - 16.15 Implantation and recurrent miscarriage, clinical aspects – S.
    [Show full text]
  • Mouse Model of Human Infertility: Transient and Local Inhibition of Endometrial STAT-3 Activation Results in Implantation Failure
    FEBS Letters 580 (2006) 2717–2722 Mouse model of human infertility: Transient and local inhibition of endometrial STAT-3 activation results in implantation failure Hitomi Nakamuraa,1, Tadashi Kimuraa,*, Shinsuke Koyamaa, Kazuhide Ogitaa, Tateki Tsutsuia, Koichiro Shimoyaa, Takeshi Taniguchib, Masayasu Koyamaa, Yasufumi Kanedac, Yuji Murataa a Division of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan b Taniguchi Hospital, 1-5-20, Ohnishi, Izumisano, Osaka 5980043, Japan c Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan Received 22 February 2006; revised 6 April 2006; accepted 7 April 2006 Available online 21 April 2006 Edited by Robert Barouki although there is no consensus description for the diagnosis Abstract Embryo implantation involves a series of biochemical reactions and its failure is an important therapeutic target of to date. We hypothesize that a few multi-potential transcrip- infertility treatment. We established an infertile mouse model tional factors might initiate the regulatory cascade and have using transient and local suppression of signal transducer and pivotal roles in generating the implantation window. There- activator of transcription-3 (STAT-3) activity by STAT-3 decoy fore, we devised a local and transient in vivo gene transfer sys- transfer into the uterine cavity during implantation, resulting in tem to modulate the function of endometrial signaling <30% implantation. This infertility is caused by suppression of molecules during the implantation window, without disturbing decidualization, which is indispensable for implantation, and the course of pregnancy [5]. STATs are a family of latent cyto- independent of progesterone.
    [Show full text]