Dreams May Be Crucial in Mammalian Memory Processing. Important Information Acquired While Awake May Be Reprocessed During Sleep

Total Page:16

File Type:pdf, Size:1020Kb

Dreams May Be Crucial in Mammalian Memory Processing. Important Information Acquired While Awake May Be Reprocessed During Sleep Dreams may be crucial in mammalian memory processing. Important information acquired while awake may be reprocessed during sleep TheMeaning ofDreams By Jonathan Winson Throughout history, human beings have sought to understand the meaning of dreams. The ancient Egyptians believed dreams possessed oracular pow- state, a period of several minutes when thoughts consist of frag- er—in the Bible, for example, Joseph’s elucidation of Pharaoh’s mented images or minidramas. The hypnogogic state is followed dream averted seven years of famine. Other cultures have in- by slow-wave sleep, so called because at that time the brain terpreted dreams as inspirational, curative or alternative reality. waves of the neocortex (the convoluted outer mantle of the During the past century, scientists have offered conflicting psy- brain) are low in frequency and large in amplitude. These sig- chological and neuroscientific explanations for dreams. In nals are measured as electroencephalographic (EEG) recordings. 1900, with the publication of The Interpretation of Dreams, Researchers also discovered that a night’s sleep is punctu- Sigmund Freud proposed that dreams were the “royal road” to ated by periods in which the EEG readings are irregular in fre- the unconscious, that they revealed in disguised form the deep- quency and low in amplitude—similar to those observed in est elements of an individual’s inner life. awake individuals. These periods of mental activity are called More recently, in contrast, dreams have been characterized REM sleep. Dreaming takes place solely during these periods. as meaningless, the result of random nerve cell activity. Dream- While in REM sleep, motor neurons are inhibited, preventing ing has also been viewed as the means by which the brain rids the body from moving freely but allowing extremities to remain itself of unnecessary information—a process of “reverse learn- slightly active. Eyes move rapidly in unison under closed lids, ing,” or unlearning. breathing becomes irregular, and heart rate increases. Based on recent findings in my own and other neuroscien- The first REM stage of the night follows 90 minutes of slow- tific laboratories, I propose that dreams are indeed meaningful. wave sleep and lasts for 10 minutes. The second and third REM Studies of the hippocampus (a brain structure crucial to mem- periods follow shorter slow-wave sleep episodes but grow pro- ory), of rapid eye movement (REM) sleep and of a brain wave gressively longer themselves. The fourth and final REM inter- called theta rhythm suggest that dreaming reflects a pivotal as- val lasts 20 to 30 minutes and is followed by awakening. If a pect of the processing of memory. In particular, studies of theta dream is remembered at all, it is most often the one that oc- rhythm in subprimate animals have provided an evolutionary curred in this last phase of REM sleep. clue to the meaning of dreams. They appear to be the nightly This sleep cycle—alternating slow-wave and REM sleep— record of a basic mammalian memory process: the means by appears to be present in all placental and marsupial mammals. which animals form strategies for survival and evaluate current Mammals exhibit the various REM-associated characteristics experience in light of those strategies. The existence of this pro- observed in humans, including EEG readings similar to those cess may explain the meaning of dreams in human beings. of the awake state. Animals also dream. By destroying neurons in the brain stem that inhibit movement during sleep, research- Stages of Sleep and Dreaming ers found that sleeping cats rose up and attacked or were star- THE PHYSIOLOGY OF DREAMING was first understood in tled by invisible objects—ostensibly images from dreams. 1953, when researchers characterized the human sleep cycle. By studying nonprimate animals, scientists have discovered They found that sleep in humans is initiated by the hypnogogic additional neurophysiological aspects of REM sleep. They de- 54 SCIENTIFIC AMERICAN Updated from the November 1990 issue COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC. JACOB’S LADDER, painted in 1973 by Marc Chagall, depicts a biblical story. When Freud wrote The Interpretation of Dreams, the phys- Jacob dreams of angels ascending to and descending from heaven on a ladder. iology of sleep was unknown. In light of the discovery of REM sleep, certain elements of his psychoanalytic theory were mod- termined that neural control of this stage of the sleep cycle is cen- ified, and the stage was set for more neurologically based the- tered in the brain stem (the brain region closest to the spinal ories. Dreaming came to be understood as part of a biologically cord) and that during REM sleep neural signals—called pontine- determined sleep cycle. Yet the central concept of Freud’s theo- geniculate-occipital (PGO) cortex spikes—proceed from the ry—namely, the belief that dreams reveal a censored representa- brain stem to the center of visual processing, the visual cortex. tion of our innermost unconscious feelings and concerns—con- Brain stem neurons also initiate a sinusoidal wave (one resem- tinues to be used in psychoanalysis. bling a sine curve) in the hippocampus. This brain signal is called Some theorists abandoned Freud altogether following the theta rhythm. neurological discoveries. In 1977 J. Allan Hobson and Robert At least one animal experiences slow-wave but not REM McCarley of Harvard Medical School proposed the “activa- sleep—and, consequently, does not exhibit theta rhythm when tion-synthesis” hypothesis. They suggested that dreaming con- asleep. This animal is the echidna, or spiny anteater, an egg-lay- sists of associations and memories elicited from the forebrain ing mammal (called a monotreme) that provides some insight (the neocortex and associated structures) in response to ran- into the origin of dreaming. The absence of REM sleep in the dom signals from the brain stem such as PGO spikes. Dreams echidna suggests that this stage of the sleep cycle evolved some were merely the “best fit” the forebrain could provide to this 140 million years ago, when marsupials and placentals diverged random bombardment from the brain stem. Although dreams from the monotreme line. (Monotremes were the first mammals might at times appear to have psychological content, their to develop from reptiles.) bizarreness was inherently meaningless. By all evolutionary criteria, the perpetuation of a complex The sense, or plot, of dreams resulted from order that was brain process such as REM sleep indicates that it serves an im- imposed on the chaos of neural signals, Hobson said. “That or- portant function for the survival of mammalian species. Un- der is a function of our own personal view of the world, our re- SCALA/ART RESOURCE, ©2002 ARTISTS RIGHTS SOCIETY (ARS), NEW YORK/ADAGP, PARIS derstanding that function might reveal the meaning of dreams. mote memories,” he wrote. In other words, the individual’s www.sciam.com THE HIDDEN MIND 55 COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC. emotional vocabulary could be relevant ment by PGO waves and their own were a running record of these parasitic to dreams. In a further revision of the knowledge of the behavior of stimulated thoughts—material to be purged from original hypothesis, Hobson also sug- neural networks, Crick and Mitchison memory. “We dream to forget,” Crick gested that brain stem activation may postulated that a complex associational and Mitchison wrote. serve merely to switch from one dream neural network such as the neocortex The two researchers proposed a revi- episode to another. might become overloaded by vast amounts sion in 1986. Erasure of parasitic thoughts of incoming information. The neocortex accounted only for bizarre dream con- Reverse Learning could then develop false, or “parasitic,” tent. Nothing could be said about dream ALTHOUGH HOBSON and McCarley thoughts that would jeopardize the true narrative. Furthermore, dreaming to for- had presented an explanation of dream and orderly storage of memory. get, they said, was better expressed as content, the basic function of REM sleep According to their hypothesis, REM dreaming to reduce fantasy or obsession. remained unknown. In 1983 Francis sleep served to erase these spurious asso- None of these hypotheses seems to Crick of the Salk Institute for Biological ciations on a regular basis. Random PGO explain adequately the function of dream- Studies in San Diego and Graeme Mitchi- waves impinged on the neocortex, re- ing. On the one hand, Freud’s theory son of the University of Cambridge pro- sulting in erasure, or unlearning, of the lacked physiological evidence. (Although posed the idea of reverse learning. Work- false information. This process served an Freud had originally intended to describe ing from the Hobson-McCarley assump- essential function: it allowed the orderly the neurology of the unconscious and of tion of random neocortical bombard- processing of memory. In humans, dreams dreams in his proposed “Project for a Sci- entific Psychology,” the undertaking was premature, and he limited himself to psy- Prefrontal cortex choanalysis.) On the other hand, despite revisions to incorporate elements of psy- Septum chology, most of the later theories denied that dreams had meaning. Exploring the neuroscientific aspects of REM sleep and of memory processing seemed to me to hold the greatest poten- tial for understanding the meaning and function of dreams. The key to this re- search was theta rhythm. Theta rhythm was discovered in 1954 in awake animals by John D. Green and Arnaldo A. Arduini of the Universi- ty of California at Los Angeles. The re- searchers observed a regular sinusoidal signal of six cycles per second in the hippocampus of rabbits when the animals were apprehensive of stimuli in their en- vironment. They named the signal theta Visual rhythm after a previously discovered HIPPOCAMPUS Entorhinal cortex EEG component of the same frequency. cortex Theta rhythm was subsequently re- Hippocampus corded in the tree shrew, mole, rat and Brain stem cat.
Recommended publications
  • Quantitative EEG (QEEG) Analysis of Emotional Interaction Between Abusers and Victims in Intimate Partner Violence: a Pilot Study
    brain sciences Article Quantitative EEG (QEEG) Analysis of Emotional Interaction between Abusers and Victims in Intimate Partner Violence: A Pilot Study Hee-Wook Weon 1, Youn-Eon Byun 2 and Hyun-Ja Lim 3,* 1 Department of Brain & Cognitive Science, Seoul University of Buddhism, Seoul 08559, Korea; [email protected] 2 Department of Youth Science, Kyonggi University, Suwon 16227, Korea; [email protected] 3 Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada * Correspondence: [email protected] Abstract: Background: The perpetrators of intimate partner violence (IPV) and their victims have different emotional states. Abusers typically have problems associated with low self-esteem, low self-awareness, violence, anger, and communication, whereas victims experience mental distress and physical pain. The emotions surrounding IPV for both abuser and victim are key influences on their behavior and their relationship. Methods: The objective of this pilot study was to examine emotional and psychological interactions between IPV abusers and victims using quantified electroencephalo- gram (QEEG). Two abuser–victim case couples and one non-abusive control couple were recruited from the Mental Image Recovery Program for domestic violence victims in Seoul, South Korea, from Citation: Weon, H.-W.; Byun, Y.-E.; 7–30 June 2017. Data collection and analysis were conducted using BrainMaster and NeuroGuide. Lim, H.-J. Quantitative EEG (QEEG) The emotional pattern characteristics between abuser and victim were examined and compared to Analysis of Emotional Interaction those of the non-abusive couple. Results: Emotional states and reaction patterns were different for between Abusers and Victims in the non-abusive and IPV couples.
    [Show full text]
  • The Meaning of Dreams Dreams May Reflect a Fundamental Aspect of Mammalian Memory Processing
    The Meaning of Dreams Dreams may reflect a fundamental aspect of mammalian memory processing. Crucial information acquired during the waking state may be reprocessed during sleep by Jonathan Winson The Author hroughout history human beings have sought to understand the meaning of dreams. The ancient Egyptians believed dreams JONATHAN WINSON possessed oracular power—in the Bible, for example, Joseph’s started his career as an elucidation of Pharaoh’s dream averted seven years of famine. SCALA/ART RESOURCE aeronautical engineer, grad- TOther cultures have interpreted dreams as inspirational, curative or alterna- uating with an engineering degree from the California tive reality. During the past century, scientists have offered conflicting psy- Institute of Technology in chological and neuroscientific explanations for dreams. In 1900, with the 1946. He completed his publication of The Interpretation of Dreams, Sigmund Freud proposed that Ph.D. in mathematics at dreams were the “royal road” to the unconscious; that they revealed in dis- Columbia University and guised form the deepest elements of an individual’s inner life. then turned to business for More recently, in contrast, dreams have been characterized as meaningless, 15 years. Because of his keen interest in neurosci- the result of random nerve cell activity. Dreaming has also been viewed as the ence, however, Winson means by which the brain rids itself of unnecessary information—a process started to do research at the of “reverse learning,” or unlearning. Rockefeller University on Based on recent findings in my own and other neuroscientific laboratories, memory processing during I propose that dreams are indeed meaningful. Studies of the hippocampus (a waking and sleeping states.
    [Show full text]
  • QUANTITATIVE BRAIN ELECTRICAL ACTIVITY in the INITIAL SCREENING of MILD TRAUMATIC BRAIN INJURIES AFTER BLAST By
    Wayne State University Wayne State University Theses 1-1-2015 Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast Chengpeng Zhou Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Zhou, Chengpeng, "Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast" (2015). Wayne State University Theses. Paper 442. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. QUANTITAITVE BRAIN ELECTRICAL ACTIVITY IN THE INITIAL SCREENING OF MILD TRAUMATIC BRAIN INJURIES AFTER BLAST by CHENGPENG ZHOU THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2015 MAJOR: BIOMEDICAL ENGINEERING Approved by: ____________________________________ Advisor Date © COPYRIGHT BY CHENGPENG ZHOU 2015 All Rights Reserved DEDICATION I dedicate my work to my family ii ACKNOWLEDGEMENTS First and foremost, I would like to thank God for giving me the strength to go through the Master journey in Biomedical Engineering. I would like to thank my mother, Mrs. Jurong Chen, for her love and constant support. I can finish my work today, because she was always ready to give everything! Thank you for your selfless love; you give me strength to continue my work and study. I would like to thank Dr. Chaoyang Chen, my mentor and my advisor, for giving me the chance to work in his lab.
    [Show full text]
  • Learning Alters Theta-Nested Gamma Oscillations in Inferotemporal Cortex
    Learning alters theta-nested gamma oscillations in inferotemporal cortex Keith M Kendrick1, Yang Zhan1, Hanno Fischer1 Ali U Nicol1 Xuejuan Zhang 2 & Jianfeng Feng3 1Cognitive and Behavioural Neuroscience, The Babraham Institute, Cambridge, CB22 3AT, UK 2Mathematics Department, Zhejiang Normal University, Jinhua 321004, Zhejian Province, PR China 3Department of Computer Science, Warwick University, Coventry CV4 7AL UK and Centre for Computational Systems Biology, Fudan University, Shanghai, PR China. Corresponding authors: [email protected] [email protected] 1 How coupled brain rhythms influence cortical information processing to support learning is unresolved. Local field potential and neuronal activity recordings from 64- electrode arrays in sheep inferotemporal cortex showed that visual discrimination learning increased the amplitude of theta oscillations during stimulus presentation. Coupling between theta and gamma oscillations, the theta/gamma ratio and the regularity of theta phase were also increased, but not neuronal firing rates. A neural network model with fast and slow inhibitory interneurons was developed which generated theta nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity similar learning-evoked changes could be produced. The model revealed that altered theta nested gamma could potentiate downstream neuron responses by temporal desynchronization of excitatory neuron output independent of changes in overall firing frequency. This learning-associated desynchronization was also exhibited by inferotemporal cortex neurons. Changes in theta nested gamma may therefore facilitate learning-associated potentiation by temporal modulation of neuronal firing. The functions of both low and high frequency oscillations in the brain have been the subject of considerable speculation1. Low frequency theta oscillations (4-8Hz) have been observed to increase in terms of power and phase-locked discharge of single neurons in a visual memory task2.
    [Show full text]
  • Michelia Essential Oil Inhalation Increases Fast Alpha Wave Activity
    Scientia Pharmaceutica Article Michelia Essential Oil Inhalation Increases Fast Alpha Wave Activity Phanit Koomhin 1,2,3,*, Apsorn Sattayakhom 2,4, Supaya Chandharakool 4, Jennarong Sinlapasorn 4, Sarunnat Suanjan 4, Sarawoot Palipoch 1, Prasit Na-ek 1, Chuchard Punsawad 1 and Narumol Matan 2,5 1 School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (S.P.); [email protected] (P.N.-e.); [email protected] (C.P.) 2 Center of Excellence in Innovation on Essential oil, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (A.S.); [email protected] (N.M.) 3 Research Group in Applied, Computational and Theoretical Science (ACTS), Walailak University, Nakhonsithammarat 80160, Thailand 4 School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (S.C.); [email protected] (J.S.); [email protected] (S.S.) 5 School of Agricultural Technology, Walailak University, Nakhonsithammarat 80160, Thailand * Correspondence: [email protected]; Tel.: +66-95295-0550 Received: 13 February 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Essential oils are volatile fragrance liquids extracted from plants, and their compound annual growth rate is expected to expand to 8.6% from 2019 to 2025, according to Grand View Research. Essential oils have several domains of application, such as in the food and beverage industry, in cosmetics, as well as for medicinal use. In this study, Michelia alba essential oil was extracted from leaves and was rich in linalool components as found in lavender and jasmine oil.
    [Show full text]
  • Quantum Mind Meditation and Brain Science
    Quantum Mind Meditation and Brain Science PAUL DENNISON Published under the auspices of Rama IX Temple, Bangkok, July 2013, to mark the 2600-year anniversary of the Buddha’s enlightenment Quantum Mind Meditation and Brain Science Quantum Mind: Meditation and Brain Science © Paul Dennison Published 2013 under the auspices of Wat Phra Rama 9 Paendin Dhamma Foundation 999/9 Soi 19 Rama IX Road, Bang Kabi, Huai Khwang, Bangkok Thailand 10320 Tel: 0-2719-7676 Fax: 0-2719-7675 E-mail: [email protected] Printed and bound in Thailand by Sangsilp Press Ltd Part. 116/38-47 Rangnam Road, Thanon Phaya Thai, Ratchathewi, Bangkok Thailand 10400 Tel: 0-2642-4633-4 Fax:: 0-2245-9785 E-mail: [email protected] The front cover illustration is a combined view of the Antennae Galaxies, taken in 2011 by the ALMA Radio Telescope Array and the Hubble Space Telescope. Superposed is an EEG recording of the brain wave activity of a Samatha meditator recorded in 2010. Credit: ALMA (ESO/NAOJ/NRAO). Visible light image: the NASA/ESA Hubble Space Telescope. http://www.eso.org/public/images/eso1137a/ (Reproduced under the Creative Commons Attribution License) Contents Beginnings … Fast forward … Buddhist meditation comes West Samatha and Vipassanā meditation Jhāna An EEG study of Samatha meditation Quantum mind To be continued … Links and references Beginnings … Considering the precision and detail of Buddhist meditation traditions handed down, person to person, to this day, it is easy to not fully appreciate the very long time period involved, or the great achievement of Buddhist Sanghas worldwide in preserving the teachings.
    [Show full text]
  • Physiology of Dreaming
    REVIEW ARTICLE Category: Review - Clinic ISSN 1984-0659 PHYSIOLOGY OF DREAMING Cesar Timo-Iaria (in memorian), Angela Cristina do Valle* Laboratório de Neurocirurgia Funcional – Faculdade de Medicina - Universidade de São Paulo - USP *Correspondence: Angela Cristina do Valle Universidade de São Paulo – USP - Faculdade de Medicina Avenida Dr. Arnaldo, 455 01246-903 São Paulo SP, Brasil E-mail: [email protected] Dreaming has been a subject of cogitation since remote Antiq- can be seen resting with no movements whatsoever. This is spe- uity. In ancient Greece, Socrates, Plato and Aristotle discussed cially true as to bees, that at night do interrupt their hum, “even about the meaning of dreams, concluding that the prevailing mis- if they are exposed to the light of a lantern”. tic and mythic concepts about them were incorrect. Instead, they “Dreams are not ghosts (phantasmata), since they are closely thought that dreams were not provoked by spirits, ghosts or gods, related to the events of the previous day”. which took over the mind to express themselves through dream- ing. Aristotle (1), who had carefully observed several animal spe- In Greece dreams were called oneiros, a word that originated cies while asleep, noticed that movements of several of their body the adjective oniric but that meant not exactly what was dreamed parts were quite similar to those performed by humans during about neither the dreaming process, which was not rated as some- dreaming. Some of his statements, hereby reproduced in a simpli- thing important, but the phantasmata, i.e. the apparitions. As a fied form from his book on sleep and dreams, briefly illustrate his prevailing concept even today, dreams were considered premoni- contribution to the study of this subject: tory, messages from the dead and mystical warnings.
    [Show full text]
  • Post-Traumatic Stress Disorder and Vision
    Optometry (2010) 81, 240-252 Post-traumatic stress disorder and vision Joseph N. Trachtman, O.D., Ph.D. Elite Performance and Learning Center, PS, Seattle, Washington. KEYWORDS Abstract Post-traumatic stress disorder (PTSD) can be defined as a memory linked with an unpleas- Post-traumatic stress ant emotion that results in a spectrum of psychological and physical signs and symptoms. With the disorder; expectation of at least 300,000 postdeployment veterans from Iraq and Afghanistan having PTSD, op- Traumatic brain injury; tometrists will be faced with these patients’ vision problems. Complicating the diagnosis of PTSD is Vision; some overlap with patients with traumatic brain injury (TBI). The estimated range of patients with TBI Peptides; having PTSD varies from 17% to 40%, which has recently led the Federal government to fund research Limbic system; to better ascertain their relationship and differences. As a result of the sensory vision system’s inter- Ocular pathways connections with the structures of the limbic system, blurry vision is a common symptom in PTSD patients. A detailed explanation is presented tracing the sensory vision pathways from the retina to the lateral geniculate body, visual cortex, fusiform gyrus, and the hypothalamus. The pathways from the superior colliculus and the limbic system to the eye are also described. Combining the understand- ing of the afferent and efferent fibers reveal both feedforward and feedback mechanisms mediated by nerve pathways and the neuropolypeptides. The role of the peptides in blurry vision is elaborated to provide an explanation as to the signs and symptoms of patients with PTSD. Although optometrists are not on the front line of mental health professionals to treat PTSD, they can provide the PTSD pa- tients with an effective treatment for their vision disorders.
    [Show full text]
  • Physiology in Sleep
    Physiology in Sleep Section Gilles Lavigne 4 17 Relevance of Sleep 21 Respiratory Physiology: 26 Endocrine Physiology in Physiology for Sleep Central Neural Control Relation to Sleep and Medicine Clinicians of Respiratory Neurons Sleep Disturbances 18 What Brain Imaging and Motoneurons during 27 Gastrointestinal Reveals about Sleep Sleep Physiology in Relation to Generation and 22 Respiratory Physiology: Sleep Maintenance Understanding the 28 Body Temperature, 19 Cardiovascular Control of Ventilation Sleep, and Hibernation Physiology: Central and 23 Normal Physiology of 29 Memory Processing in Autonomic Regulation the Upper and Lower Relation to Sleep 20 Cardiovascular Airways 30 Sensory and Motor Physiology: Autonomic 24 Respiratory Physiology: Processing during Sleep Control in Health and in Sleep at High Altitudes and Wakefulness Sleep Disorders 25 Sleep and Host Defense Relevance of Sleep Physiology for Chapter Sleep Medicine Clinicians Gilles Lavigne 17 Abstract a process that is integral to patient satisfaction and well The physiology section of this volume covers a wide spectrum being. A wider knowledge of physiology will also assist clini- of very precise concepts from molecular and behavioral genet- cians in clarifying new and relevant research priorities for ics to system physiology (temperature control, cardiovascular basic scientists or public health investigators. Overall, the and respiratory physiology, immune and endocrine functions, development of enhanced communication between health sensory motor neurophysiology), integrating functions such as workforces will promote the rapid transfer of relevant clinical mental performance, memory, mood, and wake time physical issues to scientists, of new findings to the benefit of patients. functioning. An important focus has been to highlight the At the same time, good communication will keep clinicians in relevance of these topics to the practice of sleep medicine.
    [Show full text]
  • High Amplitude Theta Wave Bursts: a Novel Electroencephalographic Feature of REM Sleep and Cataplexy
    Archives Italiennes de Biologie, 153: 77-86, 2015. DOI 10.12871/000398292015233 High amplitude Theta wave bursts: a novel electroencephalographic feature of REM sleep and cataplexy V. LO MARTIRE, S. BASTIANINI, C. BERTEOTTI, A. SILVANI, G. ZOCCOLI PRISM lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy Each author discloses the absence of any conflict of interest. ABSTRACT High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the pub- lished literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic com- plexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.
    [Show full text]
  • The Effects of Music and Alpha-Theta-Wave Frequencies on Meditation
    The effects of music and alpha-theta-wave frequencies on meditation An explorative study „Masterarbeit zur Erlangung des Grades Master of Arts im interuniversitären Masterstudium Musikologie“ Universität für Musik und darstellende Kunst Graz (KUG) Vorgelegt von Florian Eckl Institut für elektronische Musik und Akustik Begutachter: Prof. Robert Höldrich Graz 2016 1 Acknowledgment First of all, I want to thank my dad, Prof. Mag. Dr. Peter Eckl, for all the help, the good and inspiring discussions I had with him and the lifelong support. Next I want to thank my sister, Judith Eckl, for all the positive energy she gave me. Also thanks to my girlfriend, Andrea Schubert, for motivating me to finish this master thesis. I am also very grateful to my mentor, Prof. Robert Höldrich, for providing the necessary equipment, helping with professional support and the enthusiasm he is working with. Furthermore I have to thank Dr. Mathias Benedek for the help with the analyses of the GSR-measurements and also thanks to Mona Schramke (head of Meditas) who sponsored this master thesis with gift certificates for sound meditation. Last but not least I want to thank my mum. She was my inspiration for the topic of this master thesis and always gave, and still gives me selfless infinite love. 2 1. Introduction .......................................................................................................................... 8 2. Current state of Research .............................................................................................. 12 2.1
    [Show full text]
  • The Functions of Sleep
    Vo l u me 2, Issue 3, 155–171. DOI:10.3934/Neuroscience.2015.3.155 Received date 3 May 2015, Accepted date 12 August 2015, Published date 24 August 2015 http://www.aimspress.com/ Review The Functions of Sleep Samson Z Assefa 1, *, Montserrat Diaz-Abad 1, Emerson M Wickwire 1, and Steven M Scharf 1 1 Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland, Baltimore, MD 21201 * Correspondence: E-mail: [email protected]; Tel: 410-706-4771; Fax: 410-706-0345 Abstract: Sleep is a ubiquitous component of animal life including birds and mammals. The exact function of sleep has been one of the mysteries of biology. A considerable number of theories have been put forward to explain the reason(s) for the necessity of sleep. To date, while a great deal is known about what happens when animals sleep, there is no definitive comprehensive explanation as to the reason that sleep is an inevitable part of animal functioning. It is well known that sleep is a homeostatically regulated body process, and that prolonged sleep deprivation is fatal in animals. In this paper, we present some of the theories as to the functions of sleep and provide a review of some hypotheses as to the overall physiologic function of sleep. To better understand the purpose for sleeping, we review the effects of sleep deprivation on physical, neurocognitive and psychic function. A better understanding of the purpose for sleeping will be a great advance in our understanding of the nature of the animal kingdom, including our own.
    [Show full text]