Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Fault Slip and GPS Velocities Across the Shan Plateau 10.1002/2017JB015206 Define a Curved Southwestward Crustal Motion Key Points: Around the Eastern Himalayan Syntaxis • Fault slip and GPS velocities define a curved velocity field around the Xuhua Shi1 , Yu Wang1,2 , Kerry Sieh1 , Ray Weldon1,3, Lujia Feng1 , Chung-Han Chan1 , eastern Himalayan syntaxis 4 • Total geodetic slip rate across the and Jing Liu-Zeng sinistral-slip faults of the Shan Plateau 1 2 is ~12 mm/year, consistent with Earth Observatory of Singapore, Nanyang Technological University, Singapore, Department of Geosciences, National geologic rates over 10 Ma Taiwan University, Taipei, Taiwan, 3Department of Geological Sciences, University of Oregon, Eugene, OR, USA, 4Institute of • The southwestward tongue-like Geology, China Earthquake Administration, Beijing, China pattern of slip rates across the Shan Plateau constrains regional geodynamic models Abstract Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large Supporting Information: region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault • Supporting Information S1 styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning Correspondence to: System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and X. Shi, geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau
[email protected] define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of ~700 km followed by a decrease over the final ~100 km to the syntaxis.