The Invention of Television

Total Page:16

File Type:pdf, Size:1020Kb

The Invention of Television f (0,1 ! , t-/ r 1 The Invention of Television Albert Abramson elevision is the electrical transmission and came in 1843 when Samuel F. B. Morse developed reception of transient visual images, and is his telegraph (distant-record) machine. This was probably the first invention by committee, in a means of communication by which the letters the sense of resulting from the effort of hundreds of of the alphabet were converted into electrical equi- individuals widely separated in time and space, all valents (the Morse code) that could be either re- prompted by the urge to produce a system of seeing corded on paper tape or transcribed by trained over the horizon. operators. Since the code was transmitted over wires Whether with tom-toms. smoke signals, or sema- at almost the speed of light, it soon became the phore. human beings have always tried to com- quickest means of point-to-point communication. municate with neighbours beyond the horizon. The Before long, electric wires were strung on poles con- desire has been a matter of commerce, curiosity, or necting most of the major cities. These same wires most importantly, warfare. Written messages were were also run under the lakes and oceans of the sent by ships, horses, birds, and shanks mare. But world. these were slow, cumbersome, and subject to the About the same time, other inventors were seek- whims of weather, terrain, or the endurance of ing means to transmit more than dots and dashes animals. The first steps towards instant commun- over these same wires. One of the earliest was ications were really taken by seventeenth- and Alexander Bath in 1843. In Bains device, alphabetical eighteenth-century scientists such as Luigi Galvani, letters were formed by a number of lines, each being Allesandro Volta, Hans C. Oersted, Andre Ampere, connected by a separate wire. A comb like probe George S. Ohm, Michael Faraday, and James Clerk containing insulated metal points scanned the type Maxwell, who found that electrical currents could to he transmitted. At the receiver, a similar metallic flow through certain materials as well as interact comb reproduced the letters on chemically treated with magnetic forces. The first practical solution paper. Albert Abramson TIIE INVENTION OF TELEVISION the first mention in the literature of an all-electric The Transmission of Symbols By the end of t878, the combination of Bells tele- Experiments with electrical discharges inside phone and Edisons invention of the phonograph evacuated glass tubes started with the work of television system. Unknown to Campbell Swinton, both Professor A more advanced device was that of Frederick C. ( 1877) combined with progress being made in photo- Heinrich Geissler and Julius Plucker in 1858. Placket- Boris Rozing in Russia and Or Max Dieckmann in Bakewell in 1847 for transmitting handwriting, graphy led the magazine Punch to print a cartoon designed a sealed glass tube filled with gas, with an Germany were also experimenting with cathode which used a metal foil inscribed with insulating of a new Edison invention the telephonoscope. electrode inserted at each end. When a certain volt- ink wrapped around a cylinder. As the cylinder was Here was depicted a two-way visual system on a age was applied to the electrodes, the gas in the tube ray tubes as receivers. 1-lowever, no one before had suggested the use of a cathode ray tube as an image rotated by clockwork, a metal stylus was used to wide screen depicting parents in London speaking ionized (incandesced), current flowed, and the tube glide over the foil. A similar device at the receiver with their daughter in Ceylon by means of an elec- glowed with a characteristic colour. This became transmitter. Just one year later, in 1909, three different televi- provided means to shift the pens and to keep the tric camera obscure and telephone. Edison did not known as a Geissler tube. sion systems were actually built and operated. The devices in synchronism. apply for a patent on a motion picture system until Other scientists soon started to experiment with first (in order of publication) was that of Dr Max Another interesting device by Giovanni Caselli in 1889. It is ironic that Punch should have Edison invent these tubes. Wilhelm Hittorf discovered in 1869 that 1855 used the actions of pendulums. At the trans- an electric camera before he invented the motion a solid body would cast a shadow on the walls ofthe Dieckmann. His equipment consisted of a unique device at the transmitter with a cold cathode Braun mitter a stylus connected by a lever to a pendulum picture camera. But there were many schemes for tube. In 1876 Eugen Goldstein concluded that the tube for a receiver. The transmitter consisted of a would physically trace the object to be transmit- visual communication gadgets at the time. radiation came from the cathode and called them rotating wheel that was fitted with twenty wire ted and would be electrically turned on or off as In 188o Maurice LeBlanc detailed an ingenious cathode rays. William Crooks showed that the rays brushes. (It had no photo-cells or other light-trans- it scanned parts of the message. At the receiver, method of transmitting moving images over an elec- were projected at high velocities by electric forces ducing means.) The brushes actually touched the another stylus moved by a pendulum would be trical wire. He described a scanning device (at both near the surface of the cathode. Jean Perrin showed image to be transmitted, very much like the early turned on or off in sequence and would create a sender and receiver) consisting of two vibrating mir- that the charge was negative in 1895. In 1897, J. J. devices of Bain and Caselli. At the receiver, the Braun replica (on some form of recording medium) of the rors working together at two different rates of speed. Thompson proved that they could be deflected by an tube with four deflecting magnets scanned a pic- image being transmitted. The light from the image would be sent to a trans- electrostatic field, and finally in 1897 Karl Ferdinand ture approximately 1.25 inches square. The electron The scanning of simple figures was quite im- ducer (such as a selenium or Becquerel thermo- Braun developed the cold cathode ray tube that bears off as the rotating brushes portant as it involved two of the foundations of electric cell) to be converted into electricity. At the his name. beans was turned on or touched the object, thus creating a picture on the the later system of instant visual transmission. The receiver, he proposed that two pieces of mica (as a screen. This was not a true television system as the first was sequential scanning (dissecting) of the shutter) would be moved according to the signal to transmitter was actually a form of telegraph sender picture. The second was a means to synchronize control the light from a lamp. He suggested that The Cathode Ray Tube rattler than a transducer alight to electricity. (keep in step) the transmitter with the receiver. because of persistence of vision, it would be possible The second system was that of Ernst Ruhmer. It These primitive machines, while quite cumbersome, to build up a likeness of the transmitted image. An International Electricity Congress was held in consisted of a mosaic of twenty-live selenium cells in did work, and though of limited value at the time LeBlancs n88o fundamental paper contained in fact conjunction with the ono Paris Exhibition. On 25 rows of live each. Each cell when exposed to light led to more important devices in the future. These all the elements for a practical visual transmission August moo a paper was read by one Constantin sent an alternating systems were then called copy-telegraphs. Today system. Perskyi entitled "Television, in which he described was connected to a relay, which current over a line to a receiver. I fere, there was a they are known as photo-telegraphy or facsimile It was not long before the first practical solution an apparatus based on the magnetic properties of similar mosaic consisting of twenty-live incandes- (fax). appeared. In 1884, Paul Nipkow applied for a Ger- selenium. This new term slowly supplanted the .. • . cent lamps. At the receiver, there was one relay for The next step was the transmissioh of audio over man patent for an Elektrisches "feleskop. The heart of older names suds as the telephot or telectroscope these same wires. In 1876 the telephone pioneer Nipkows patent was a revolving apertured disc. The to describe the newly born art and science of seeing each cell that would operate its own incandescent could be shown. Alexander Graham Bell transmitted the sound of a disc had twenty-four holes in a spiral near the outer at a distance. lamp. Only simple geometric figures voice by means of an electric wire and thus three rim. Nipkow proposed that light from the subject The various theories of transmitting pictures by As it was a multi-wire (simultaneous) device, it was means of instant communications came into exis- would pass through the perforated disc on to a sele- wire had created much controversy in the scientific not a true television system. tence, the telegraph, the copy-telegraph, and the nium cell. At the receiver, a similar perforated disc community. A letter to Nature by Shelford Bidwell The third was a quite different television device telephone, and the time was ripe for the introduction would be illuminated by a polarized light source. in June 1908, reviewing the various methods being built and demonstrated by Georges Rignoux and of a visual transmission system.
Recommended publications
  • Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1
    Journal of Research of the Nationa l Bureau of Sta ndards Vol. 49, No. 2, August 1952 Resea rch Paper 2345 Infrared Spectra of Noble Gases (12000 to 19000 Ar Curtis 1. Humphreys and Henry 1. Kostkowski . The first spectra of heliUl.n, neon, argon, krypton, and xe non, excited by discharges in gelssler t ubes, operated by direct connection to a transformer, have been explored in the ll1frared (1 2090 to 19000 A) . A hi~h-reso lu t.i o n , automatically recording, infrared spec trom­ eter, emploYlllg a. 15009-h~ es -p e r-lllch gratlllg and lead-sulfi de photocond ucting detector, was used as t he dlspersmg mstrument. A new set of wavelength values is reported for all t hese spectra. New data include 18 pre viously unreported lines of neon and 36 of krypton all of which have been. classified . .~h e descriptions of t he spectra of argon, krypton, and xe non represent essent ially a repetit IOn of t he observations of Sitt ner and Peck. Several prev io~ s l y missing classificat ions a re supplied, also a few amended interpretat ions. The analysIs of t hese spectra m ay be regarded as complete. Use of selected lines as wavelength standards is suggested., 1. Introduction mocouple detector were reported by Humphreys and Plyler [2] . These observations covered the same The essentially complete character of both the spec tral region in which the data herein reported were d escription and interpretation of th e photographed obtained, but, because of well-known limitations af­ spec tra of the noble atmospheric gases makes it fecting the precision of spectral data obtained by apparent that any reopening of th e subject can be prism spec trometers with thermal detectors, may be justified only on the basis of th e availability of new' considered as en tirely sup erseded by the presen t sources of information, such as a new technique of work.
    [Show full text]
  • Nikola Tesla
    Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed.
    [Show full text]
  • Information and Communication Technologies: 11. Television World in History
    Information and communication technologies: 11. Television world in history. Analog and digital. Metodický koncept k efektivní podpoře klíčových odborných kompetencí s využitím cizího jazyka ATCZ62 - CLIL jako výuková strategie na vysoké škole History of television in Czechoslovakia Pioneers: ● František Pilát - later post-war technical director of Barrandov Film Studio, himself built a television receiver ● Pilát was the first in Czechoslovakia to receive experimental Baird's "thirty-line" broadcast, spread in the early 1930s (1929- 1935) from Great Britain to the mid-wave of 261.5 meters. ●The most active pre-war pioneer of the television is dr. Jaroslav Šafránek, associate professor of experimental physics at Charles University in Prague ●In 1935 Šafránek built his own functioning television equipment, with which he later traveled to the Republic and presented him in public. History of television in Czechoslovakia The Ministry of Post and Telegraph refused to authorize Šafránek to broadcast television in the air. Šafranek´s ​​equipment could only work in the laboratory and lecture halls. While Šafránek, radio amateurs and their interest organization, Czechoslovak Radio Broadcasting Corporation requested permission for experimental broadcasting of a mechanical low-line (30 line) television mainly serving radio amateurs, the Ministry of Post and Telegraph, which since 1934 closely watched developments abroad, wanted to provide frequencies for television broadcasting to some more developed Projects. He was guided by the principle - to wait, to study foreign facts and then to decide. In 1939, television research on the territory of former Czechoslovakia ended. (Threats to the Republic, Munich, and the Nazi occupation). At that time, Shafranek was working on a more advanced 240-line image decomposition device.
    [Show full text]
  • The Science of Television. Television and Its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach
    Introduction: The Science of Television. Television and its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach To cite this version: Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach. Introduction: The Science of Television. Television and its Importance for the History of Health and Medicine. Gesnerus, Schwabe Verlag Basel, 2019, 76 (2), pp.153-171. 10.24894/Gesn-en.2019.76008. hal-02885722 HAL Id: hal-02885722 https://hal.archives-ouvertes.fr/hal-02885722 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gesnerus 76/2 (2019) 153–171, DOI: 10.24894/Gesn-en.2019.76008 Introduction. The Science of Television: Television and its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach* From the live transmission of daunting surgical operations and accounts of scandals about medicines in the 1950s and 1960s to participatory aerobic workouts and militant AIDS documentaries in the 1980s the interrelation- ship of the history of bodies and health on television and the history of tele- vision can be witnessed. A telling example of this is the US born aerobics movement as it was brought to TV in Europe, with shows such as Gym Tonic (from 1982) in France, Enorm in Form (from 1983) in Germany or the Green Goddess on BBC Breakfast Time (from 1983) in Great Britain.
    [Show full text]
  • Fax, Modem, and Text Support Over IP Configuration Guide, Cisco IOS Release 15M&T
    Fax, Modem, and Text Support over IP Configuration Guide, Cisco IOS Release 15M&T Last Modified: 2015-07-31 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Fast Detection of Forgery Image Using Discrete Cosine Transform Four Step Search Algorithm
    Journal of Korea Multimedia Society Vol. 22, No. 5, May 2019(pp. 527-534) https://doi.org/10.9717/kmms.2019.22.5.527 Fast Detection of Forgery Image using Discrete Cosine Transform Four Step Search Algorithm Yong-Dal Shin†, Yong-Suk Cho†† ABSTRACT Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS). Key words: Duplicated Forgery Image, Discrete Cosine Transform, Four Step Search Algorithm 1. INTRODUCTION and Fig. 1(b) shows an original image and a copy- moved forged image respectively. Digital cameras and smart phones, and digital J. Fridrich [1] proposed an exacting match image processing software such as Photoshop, method for the forged image detection of a copy- Paintshop Pro, you can duplicate digital counterfeit move forged image.
    [Show full text]
  • Fast Cosine Transform to Increase Speed-Up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression
    Fast Cosine Transform to increase speed-up and efficiency of Karhunen-Loève Transform for lossy image compression Mario Mastriani, and Juliana Gambini Several authors have tried to combine the DCT with the Abstract —In this work, we present a comparison between two KLT but with questionable success [1], with particular interest techniques of image compression. In the first case, the image is to multispectral imagery [30, 32, 34]. divided in blocks which are collected according to zig-zag scan. In In all cases, the KLT is used to decorrelate in the spectral the second one, we apply the Fast Cosine Transform to the image, domain. All images are first decomposed into blocks, and each and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the block uses its own KLT instead of one single matrix for the Karhunen-Loève transform is applied to mentioned blocks. On the whole image. In this paper, we use the KLT for a decorrelation other hand, we present three new metrics based on eigenvalues for a between sub-blocks resulting of the applications of a DCT better comparative evaluation of the techniques. Simulations show with zig-zag scan, that is to say, in the spectral domain. that the combined version is the best, with minor Mean Absolute We introduce in this paper an appropriate sequence, Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to decorrelating first the data in the spatial domain using the DCT Noise Ratio (PSNR) and better image quality.
    [Show full text]
  • Unit 2 Setting
    History of Television Broadcasting Unit 2 Unit-2: HISTORY OF TELEVISION BROAD- CASTING UNIT STRUCTURE 2.1 Learning Objectives 2.2 Introduction 2.3 Origin and Development of Television 2.4 Transmission of Television System 2.5 Broadcasting 2.6 Colour Television 2.7 Cable Television 2.8 Television News 2.9 Digital Television 2.10 High Definition Television 2.11 Let Us Sum Up 2.12 Further Reading 2.13 Answers to Check Your Progress 2.14 Model Questions 2.1 LEARNING OBJECTIVES After going through this unit, you will be able to - describe the evolution of television discuss the discoveries made by the pioneer of television inventors analyse the television technology development list the recent trend of Digital Television 2.2 INTRODUCTION In the previous unit we were introduced to the television medium, its features and its impact and reach. The unit also provides the distinctions between television and the audio medium. In this unit we shall discuss Electronic Media-Television 23 Unit 2 History of Television Broadcasting about the overview ofthe history of television, inventions, early technological development and the new trends in the television industry around the globe. 2.3 ORIGIN AND DEVELOPMENT OF TELEVISION Television has become one of the important parts of our everyday life. It is a general known fact that television is not only providing the news and information but it is also entertaining us with its variety of programme series and shows. A majority of home-makers cannot think about spending theirafternoon leisure time withoutthe dose of daily soap opera; a concerned citizen cannot think of skipping the prime time in news channel or a sports lover in India cannot miss a live cricket match.
    [Show full text]
  • World Converter Model WC-01 User and Technical Manual
    World Converter Model WC-01 User and Technical Manual Copyright 2008-10 Aurora Design LLC. Revision 1.8 1 January, 2010 All specifications subject to change www.tech-retro.com Introduction Introduction This manual covers the operation and technical aspects of the Aurora Design World Converter. This Converter is designed to accept any standard color NTSC, PAL or SECAM video signal and convert to one of many different output standards, both electronic and mechanical. Features • Compact, low power, surface mount design • Front panel 20 character / 2 line high contrast LCD and rotary encoders • Agile built-in RF Modulator: - Programmable between 28.5-880MHz - Supports positive/negative video and AM/FM audio modulation schemes - Preprogrammed with 31 RF Systems and over 800 channels - Custom User configurable RF System with up to 32 unique channels • Converter bypass mode for use as stand alone RF Modulator • Extremely stable output: +/- 3% levels, +/- 50ppm timing • Extremely accurate algorithms used for conversions: - Three line interpolation on all electronic standards - All internal calculations done to a minimum 14 bit precision • 10 bit professional grade video decoder • 2 high speed 12 bit video D/A’s for greater than 66dB dynamic range • 3 medium speed 12 bit video D/A’s for mechanical RGB output • 4 low speed 12 bit D/A’s for system control • 256Mb or 512Mb FLASH Image Memory for storing of custom images • 128Mb SDRAM holds eight 10 bit images with 63 mega-pixel/sec performance • 500K gate equivalent, 300Kb RAM FieldProgrammableGateArray
    [Show full text]
  • A Timeline of Technology
    A Timeline of Technology 10 million Humans make the first tools from stone, wood, antlers, and bones. Tools and machines years ago. 1-2 million Humans discover fire. Biofuels Candles Car engines Jet engines years ago 10,000 BCE Earliest boats are constructed. Ships and boats 8000-9000 Beginnings of human settlements and agriculture. Biofuels BCE Water 6000-7000 Hand-made bricks first used for construction in the Middle East. Bricks BCE 4000 BCE Iron used for the first time in decorative ornaments. Iron and steel 3500 BCE Humans invent the wheel. Tools and machines Wheels and axles c1700 BCE Semites of the Mediterranean develop the alphabet. Digital pens 0-1500 BCE Ancient societies invent some of the first machines for moving water and agriculture. Tools and machines Water 1000 BCE Iron Age begins: iron is widely used for making tools and weapons in many parts of the world. Iron and steel c.150-100 First gear-driven, precision clockwork machine (the Antikythera mechanism) is developed. Clockwork BCE c.50 BCE Roman engineer Vitruvius perfects the modern, vertical water wheel. Turbines 62 CE Hero of Alexandria, a Greek scientist, pioneers steam power. Steam engines 105 CE Ts'ai Lun makes the first paper in China. Paper 27 BCE-395 Romans develop the first, basic concrete called pozzolana. Steel and concrete CE ~600 CE Windmills are invented in the Middle East. Wind turbines 700-900 CE Chinese invent gunpowder and fireworks. Bullets Fireworks 1000 CE ?? Chinese develop eyeglasses by fixing lenses to frames that fit onto people's faces. Lenses 1450 Johannes Gutenberg pioneers the modern printing press, using rearrangeable metal letters called movable type.
    [Show full text]
  • Ordre Nom Et Prenom Emploi Affectation Academie 1 Reffuveille Proviseur De Lycee Lgt Jacques Prevert Versailles Claude
    ORDRE NOM ET PRENOM EMPLOI AFFECTATION ACADEMIE 1 REFFUVEILLE PROVISEUR DE LYCEE LGT JACQUES PREVERT VERSAILLES CLAUDE 23 CHEMIN VERT DE BOISSY 2 LAVESQUE PRINCIPAL DE COLLEGE CLG AUSONE BORDEAUX CHRISTIAN 69 AV AUSONE 3 BOUTET PROVISEUR DE LYCEE LT LYCEE TECHNIQUE D'HOTELLE POLYNESIE YVES PIRAE PIRAE 4 BAR PROVISEUR DE LYCEE LGT LOUIS PASTEUR LILLE GERARD 1 RUE DES URBANISTES LILLE 5 CUBAT DIT CROS PROVISEUR DE LP LP SIXTE VIGNON TOULOUSE ANNE 12 RUE DU TAILLADE AUREILHAN 6 SOUDJIAN PROVISEUR DE LYCEE LG MONTESQUIEU NANTES GUY 1 RUE MONTESQUIEU LE MANS 7 NICOLLET PROVISEUR DE LYCEE LPO JEAN JAURES CRETEIL JEAN PAUL 9 AVENUE JEAN JAURES CHARENTON-LE-PONT 8 SEGALEN PROVISEUR DE LYCEE LGT LOUIS ARMAND GRENOBLE BERNARD 321 RUE DU GRAND CHAMP CHAMBERY 9 ROLLIN PROVISEUR DE LYCEE LGT SAINT CHARLES AIX-MARSEILLE YVES 5 RUE GUY FABRE MARSEILLE 1ER 10 MARIA PROVISEUR DE LP LPO FERNAND HOLWECK PARIS GERARD 149 RUE DE VAUGIRARD PARIS 15E 11 NAVARRO PROVISEUR DE LYCEE LPO VINCENT VAN GOGH VERSAILLES MICHEL RUE JULES FERRY AUBERGENVILLE 12 LEJEUNE PROVISEUR DE LYCEE LGT SEVIGNE RENNES CHARLES 2 RUE DE LA CHALOTAIS CESSON-SEVIGNE 13 OLIVIERI PROVISEUR DE LP LP LES COTEAUX NICE GILBERT 4/6 CHE MORGON AV DES COTEAUX CANNES 14 CHICH PROVISEUR DE LYCEE LGT PIERRE BROSSOLETTE LYON JEAN-PAUL 161 COURS EMILE ZOLA VILLEURBANNE 15 WALLERAND PROVISEUR DE LP LP RENE CASSIN NANCY-METZ JEAN PIERR 2 RUE RENE CASSIN METZ 16 PIOCH PROVISEUR DE LP LP LA COLLINE MONTPELLIER CHARLES 270 AVENUE DE LA COLLINE MONTPELLIER 17 GIRARDY PRINCIPAL DE COLLEGE CLG ERNEST BILDSTEIN
    [Show full text]
  • History of the Early Days of Ampex Corporation
    PAPER History of The Early Days of Ampex Corporation As recalled by JOHN LESLIE and ROSS SNYDER Alexander M. Poniatoff founded Ampex in 1944, primarily to manufacture small motors and generators for military applications. When WWII ended, the military contracts dropped off, and Alex had to search for a new line of business to continue his company’s existence. He and his small group of engineers heard a demonstration of a Magnetophon, a German magnetic tape recorder used by Hitler during WWII. The demonstration quickly convinced Alex to redirect his company and soon it was designing and manufacturing professional-quality magnetic tape recorders. Bing Crosby was a great help in Ampex’s early years. The company grew quickly and, within a short time, dominated the magnetic tape recorder market in radio, television, the record industry, and industrial and military markets for instrumentation recorders . Alex was born in Russia in 1892. His father was well-to- 0 INTRODUCTION do, and sent Alex to Germany for an education in engineering. After college, he returned to Russia only to see his country It has been amazing how many people today are asking become engaged in a civil war. Alex escaped to China, where questions about Ampex and the Company’s contribution to the he went to work for the Shanghai Power Company. He music recording industry, the radio and television broadcast immigrated to the United States in 1927 where he worked for industry and the stereophonic home entertainment field. There General Electric, Pacific Gas & Electric, and the Dalmo Victor is no question that Ampex was a major factor in each of these Corporation in San Carlos, California.
    [Show full text]