Influenza: Diagnosis and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Influenza: Diagnosis and Treatment Influenza: Diagnosis and Treatment David Y. Gaitonde, MD; Cpt. Faith C. Moore, USA, MC; and Maj. Mackenzie K. Morgan, USA, MC Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia Influenza is an acute viral respiratory infection that causes significant morbidity and mortality worldwide. Three types of influ- enza cause disease in humans. Influenza A is the type most responsible for causing pandemics because of its high susceptibility to antigenic variation. Influenza is highly contagious, and the hallmark of infection is abrupt onset of fever, cough, chills or sweats, myalgias, and malaise. For most patients in the outpatient setting, the diagnosis is made clinically, and laboratory con- firmation is not necessary. Laboratory testing may be useful in hospitalized patients with suspected influenza and in patients for whom a confirmed diagnosis will change treatment decisions. Rapid molecular assays are the preferred diagnostic tests because they can be done at the point of care, are highly accurate, and have fast results. Treatment with one of four approved anti-influenza drugs may be considered if the patient presents within 48 hours of symptom onset. The benefit of treatment is greatest when antiviral therapy is started within 24 hours of symptom onset. These drugs decrease the duration of illness by about 24 hours in otherwise healthy patients and may decrease the risk of serious complications. No anti-influenza drug has been proven superior. Annual influenza vaccination is recommended for all people six months and older who do not have contraindications. (Am Fam Physician. 2019; 100:online. Copyright © 2019 American Academy of Family Physicians.) Published online November 11, 2019 BEST PRACTICES IN INFECTIOUS DISEASE Influenza is an acute respiratory infection caused by a negative-strand RNA virus of the Orthomyxoviridae fam- Recommendations from the Choosing ily. Tere are three distinct types of infuenza viruses that Wisely Campaign infect humans: infuenza A, B, and C. Infuenza A infects Recommendation Sponsoring organization multiple species, including humans, swine, equines, and birds. It is more susceptible to antigenic variation and, Do not routinely avoid American Academy of Allergy, influenza vaccination in Asthma, and Immunology 1,2 hence, is the cause of major pandemics. Te surface of egg-allergic patients. the virion envelope is covered with proteins hemaggluti- nin (HA), neuraminidase (NA), and matrix 2.1 Antigenic Source: For more information on the Choosing Wisely Campaign, see https:// www.choosingwisely.org. For supporting citations and variation is associated with changes in the HA or NA sur- to search Choosing Wisely recommendations relevant to primary face proteins and is generally classifed as antigenic drif or care, see https:// www.aafp.org/afp/recommendations/search.htm. shif.1 Antigenic drif involves small, gradual amino acid substitutions of the HA or NA proteins that can result in smaller outbreaks. Antigenic shif occurs when there are novel infuenza subtypes with the potential to cause wide- signifcant changes in the HA or NA proteins that create spread pandemics.1,3 Each infuenza A subtype is charac- terized by numbering both the HA and NA proteins (e.g., H3N2, H5N1). See related Practice Guideline at https://www.aafp.org/ Epidemiology afp/2019/1015/p505.html. From 2010 to 2018, estimated seasonal infuenza activity Author disclosure: No relevant financial afliations. in the United States ranged from 9.3 million to 49 million cases and 12,000 to 79,000 deaths per year.4 Te 2017-2018 Patient information: Handouts on this topic are available infuenza season was the third most severe since 2003-2004 at https:// family doctor.org/preventing-the-flu and https:// family doctor.org/flu-myths. and was characterized by high severity of disease in all age groups.5 Most cases were secondary to the A/H3N2 subtype, and low vaccine efectiveness was a signifcant contributing Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom- Downloaded from the American Family Physician website at www.aafp.org/afp. Copyright © 2019 American Academy of Family Physicians. For the private, noncom- ◆ 1 mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests. Novembermercial use 11, of2019 one individual ePub user of the website. All other rightswww.aafp.org/afp reserved. Contact [email protected] for copyright questionsAmerican and/or permission Family Physician requests. TABLE 1 People at Increased Risk of Complications from Influenza factor.5 Based on public health laboratory specimens, the People with coexisting medical conditions predominant infuenza A subtype for the 2018-2019 season Any condition that may compromise the handling of respira- tory secretions (e.g., neuromuscular diseases, cerebral palsy, was (H1N1)pdm09 (56.6% of positive specimens), followed stroke, seizure disorder, dementia) by the A/H3N2 subtype (43.6%) and infuenza B (4%).6 Asthma or other chronic pulmonary disease Seasonal infuenza occurs primarily in the colder months Chronic kidney disease in temperate regions. Te primary mode of transmission is via inhalation of infectious respiratory particles (large drop- Chronic liver disease let transmission) when an infected person coughs or sneezes. Heart disease (acquired or congenital) Tere is also evidence of airborne (small particles transmit- Immunosuppression (e.g., HIV infection, cancer, transplant recipients, use of immunosuppressive medications) ted by talking or exhalation) and fomite transmission.6,7 Te typical incubation period is 24 to 48 hours. Patients are Long-term aspirin therapy in patients younger than 19 years infectious one to two days before symptom onset and for fve Metabolic disorders (acquired [e.g., diabetes mellitus] or inherited [e.g., mitochondrial disorders]) to seven days aferward. Children and immunosuppressed people may exhibit prolonged viral shedding.8,9 Morbid obesity In 2009, a novel H1N1 subtype (pH1N1) emerged from Sickle cell anemia and other hemoglobinopathies a quadruple reassortment of two swine viruses, one avian Special groups 10 virus, and one human virus. First identifed in Mexico Adults 65 years and older in 2009, it caused millions of cases worldwide and an esti- American Indians and Alaska Natives 11 mated 18,500 laboratory-confrmed deaths. Children younger than 5 years (particularly those younger Since 2011, outbreaks of a swine-origin H3N2 virus have than 2 years) been reported in the United States. Cases predominantly Institutionalized adults (e.g., residents of nursing homes or involved young children exposed to swine, ofen at state chronic care facilities) 12,13 fairs. Additionally, the H5N1 avian infuenza virus has Pregnant and postpartum women (up to 2 weeks postpartum, become a global concern. First identifed solely in wild geese including pregnancy loss) populations in China in 1997, the virus quickly spread to Adapted with permission from Erlikh IV, Abraham S, Kondamudi VK. domestic poultry and ultimately to human populations. Management of influenza. Am Fam Physician. 2010; 82(9): 1088, with Tere are now avian infuenza cases reported worldwide, additional information from references 18 and 19. although poultry-to-human and human-to-human trans- mission remains relatively low. Despite low transmissibility, the reported fatality rate is high (approximately 60%).14 immunosuppressed people, children younger than two years, children two to four years of age who have had asthma Prevention or wheezing in the past 12 months, and adults 50 years and Te Centers for Disease Control and Prevention’s (CDC’s) older.15 For children six months to eight years of age, two Advisory Committee on Immunization Practices (ACIP) doses of IIV administered at least four weeks apart are rec- and the American Academy of Family Physicians (AAFP) ommended if the child has not received at least two doses recommend annual infuenza vaccination for all people six of the infuenza vaccine previously. RIV is not licensed for months and older who do not have contraindications.15,16 children younger than 18 years.15 Vaccination eforts should target people at increased risk of In August 2019, ACIP recommended that LAIV may be complicated or severe infuenza (Table 117-19) and those who used in age-appropriate patients without contraindications care for or live with high-risk individuals, including health for the 2019-2020 infuenza season because it was deemed care professionals.15 Two previous FPM articles provided as efective as the IIV for prevention of the H3N2 and communication strategies and tools for increasing infuenza infuenza B viruses.15,22 Notably, infuenza-specifc antiviral vaccination rates in practice.20,21 medications may reduce the efectiveness of LAIV if given Multiple formulations of the infuenza vaccine are avail- within two days before to 14 days afer vaccine administra- able, including inactivated infuenza vaccines (IIV); a recom- tion.15 Te AAFP has made a preferential recommendation binant inactivated vaccine (RIV); and a live, attenuated for vaccination with IIV over LAIV.16 infuenza vaccine (LAIV). For physicians and patients con- A high-dose, inactivated trivalent vaccine (Fluzone High- cerned about egg allergy, quadrivalent RIV and cell culture– Dose) is licensed for adults 65 years and older, and multiple based quadrivalent IIV are completely egg-free.15 studies show
Recommended publications
  • Drug Name Peramivir Brand Name(S)
    Antimicrobial Stewardship Program Drug Name Peramivir Brand Name(s) Rapivab Drug Class Neuraminidase inhibitor Restriction level Restricted to Infectious Diseases and Pulmonology/Critical Care Accepted Indications Management of Influenza A or B in patients with the following: Strict NPO (no NGT/OGT/G-tube/J-tube) Concerns about poor gut absorption (i.e. ileus) Unacceptable Uses Management of Influenza A or B in a patient who can tolerate oral therapy whether by mouth, G-tube, or J-tube Side Effects Insomnia (3%), Diarrhea (8%), Hyperglycemia (serum glucose >160 mg/dL, 5%), Neutropenia (8%), Increased serum ALT/AST (3%), Increased CPK, 4% Pregnancy Class C Dosing Adult: 600 mg IV once* Renal dosing: - CrCl 30-50 mL/min: 200 mg dose IV once* - CrCl 15-29 mL/min: 100 mg dose IV once* - CrCl <10 mL/min or ESRD on HD: 100 mg dose once after HD‡ Pediatrics: - Children: 2-12 years: 12 mg/kg as a single dose; maximum 600mg - Adolescents ≥13 years: Refer to adult dosing Renal dosing: Infants, Children, and Adolescents <18 years: Note: Dosage adjustment based on renal function estimated using the Schwartz equation. CrCl ≥50 mL/minute/1.73 m2: No adjustment necessary CrCl 31 to 49 mL/minute/1.73 m2: 29 to 30 days of life: 1.5 mg/kg/dose once daily for 5 to 10 days 31 to 90 days of life: 2 mg/kg/dose once daily for 5 to 10 days 91 to 180 days of life: 2.5 mg/kg/dose once daily for 5 to 10 days 181 days of life through 5 years: 3 mg/kg/dose once daily for 5 to 10 days; maximum dose: 150 mg/dose 6 to 17 years: 2.5 mg/kg/dose once daily for 5 to 10
    [Show full text]
  • Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza
    Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza Aeron Hurt WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia www.influenzacentre.org NA inhibitor antiviral drugs Top view of NA NA inhibitor NA enzyme active site The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global Peramivir Laninamivir -IV - Inhaled (single) - Japan, - Japan S.Korea, China, US The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global • Came on the market in many countries in 2000 after clinical studies had been conducted among influenza virus–infected patients with uncomplicated illness. • Oseltamivir is market leader ……due to ease of oral administration • Use for seasonal influenza mainly in Japan and US • With human infections of highly pathogenic influenza A(H5N1) virus from 2003 with a high case‐fatality risks of >50%, governments began to consider antiviral drug administration as a key component of their pandemic response • suitable vaccines would not be available Stockpiling for a pandemic • Oseltamivir was simpler (oral) administration than zanamivir (inhalation) and because of systemic effect of oseltamivir was expected to be appropriate for treatment of highly pathogenic viruses • Oseltamivir was suddenly in high demand! • Roche had warned that need to stockpile to guarantee availability • Since 2005, governments of middle‐income and high‐income countries around the world have spent billions of dollars (estimated) stockpiling oseltamivir (US Gov. Accounting Office). 2009 A(H1N1)pdm09 pandemic • The first pandemic of the 21st century occurred unexpectedly in 2009 after the global spread of a novel virus—influenza A(H1N1)pdm09—of swine (rather than avian) origin.
    [Show full text]
  • Antiviral Agents Active Against Influenza a Viruses
    REVIEWS Antiviral agents active against influenza A viruses Erik De Clercq Abstract | The recent outbreaks of avian influenza A (H5N1) virus, its expanding geographic distribution and its ability to transfer to humans and cause severe infection have raised serious concerns about the measures available to control an avian or human pandemic of influenza A. In anticipation of such a pandemic, several preventive and therapeutic strategies have been proposed, including the stockpiling of antiviral drugs, in particular the neuraminidase inhibitors oseltamivir (Tamiflu; Roche) and zanamivir (Relenza; GlaxoSmithKline). This article reviews agents that have been shown to have activity against influenza A viruses and discusses their therapeutic potential, and also describes emerging strategies for targeting these viruses. HXNY In the face of the persistent threat of human influenza A into the interior of the virus particles (virions) within In the naming system for (H3N2, H1N1) and B infections, the outbreaks of avian endosomes, a process that is needed for the uncoating virus strains, H refers to influenza (H5N1) in Southeast Asia, and the potential of to occur. The H+ ions are imported through the M2 haemagglutinin and N a new human or avian influenza A variant to unleash a (matrix 2) channels10; the transmembrane domain of to neuraminidase. pandemic, there is much concern about the shortage in the M2 protein, with the amino-acid residues facing both the number and supply of effective anti-influenza- the ion-conducting pore, is shown in FIG. 3a (REF. 11). virus agents1–4. There are, in principle, two mechanisms Amantadine has been postulated to block the interior by which pandemic influenza could originate: first, by channel within the tetrameric M2 helix bundle12.
    [Show full text]
  • Treatment and Prevention of Pandemic H1N1 Influenza
    Annals of Global Health VOL. 81, NO. 5, 2015 ª 2015 The Authors. Published by Elsevier Inc. ISSN 2214-9996 on behalf of Icahn School of Medicine at Mount Sinai http://dx.doi.org/10.1016/j.aogh.2015.08.014 REVIEW Treatment and Prevention of Pandemic H1N1 Influenza Suresh Rewar, Dashrath Mirdha, Prahlad Rewar Rajasthan, India Abstract BACKGROUND Swine influenza is a respiratory infection common to pigs worldwide caused by type Ainfluenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. METHODS The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. FINDINGS Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time.
    [Show full text]
  • Influenza Virus-Related Critical Illness: Prevention, Diagnosis, Treatment Eric J
    Chow et al. Critical Care (2019) 23:214 https://doi.org/10.1186/s13054-019-2491-9 REVIEW Open Access Influenza virus-related critical illness: prevention, diagnosis, treatment Eric J. Chow1,2, Joshua D. Doyle1,2 and Timothy M. Uyeki2* Abstract Annual seasonal influenza epidemics of variable severity result in significant morbidity and mortality in the United States (U.S.) and worldwide. In temperate climate countries, including the U.S., influenza activity peaks during the winter months. Annual influenza vaccination is recommended for all persons in the U.S. aged 6 months and older, and among those at increased risk for influenza-related complications in other parts of the world (e.g. young children, elderly). Observational studies have reported effectiveness of influenza vaccination to reduce the risks of severe disease requiring hospitalization, intensive care unit admission, and death. A diagnosis of influenza should be considered in critically ill patients admitted with complications such as exacerbation of underlying chronic comorbidities, community-acquired pneumonia, and respiratory failure during influenza season. Molecular tests are recommended for influenza testing of respiratory specimens in hospitalized patients. Antigen detection assays are not recommended in critically ill patients because of lower sensitivity; negative results of these tests should not be used to make clinical decisions, and respiratory specimens should be tested for influenza by molecular assays. Because critically ill patients with lower respiratory tract disease may have cleared influenza virus in the upper respiratory tract, but have prolonged influenza viral replication in the lower respiratory tract, an endotracheal aspirate (preferentially) or bronchoalveolar lavage fluid specimen (if collected for other diagnostic purposes) should be tested by molecular assay for detection of influenza viruses.
    [Show full text]
  • Case Report Prolonged Shedding of Amantadine- and Oseltamivir- Resistant Influenza A(H3N2) Virus with Dual Mutations in an Immunocompromised Infant
    Antiviral Therapy 2010 15:1059–1063 (doi: 10.3851/IMP1657) Case report Prolonged shedding of amantadine- and oseltamivir- resistant influenza A(H3N2) virus with dual mutations in an immunocompromised infant Guillermo Ruiz-Carrascoso1*, Inmaculada Casas1, Francisco Pozo1, Marta González-Vincent2, Pilar Pérez-Breña1 1Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain 2Hospital Infantil Universitario Niño Jesús, Madrid, Spain *Corresponding author e-mail: [email protected] In this study, we report a case of multidrug-resistant contained the substitutions E119V in neuraminidase and influenza A(H3N2) virus isolated from an immunosup- V27A in M2, which produce resistance to oseltamivir and pressed patient with prolonged viral shedding. We also adamantanes, respectively. This is the first report of this describe the genetic characterization of the haemagglu- dual mutation pattern in multidrug-resistant influenza tinin, neuraminidase and M2 influenza genes. The virus A(H3N2) virus. Introduction Influenza, which causes significant morbidity and daily because of neurological toxicity). After receiving mortality in immunocompromised patients, is often fludarabine and melphalan as conditioning therapy, he associated with prolonged viral shedding [1,2] underwent allogenic non-identical peripheral blood regardless of vaccination and antiviral therapy. The transplantation from his mother in May 2005 (day 0). multidrug-resistant influenza viruses, including pan- Total lymphocyte cell (TLC) count prior to transplan- demic A(H1N1) and seasonal A(H1N1) and A(H3N2), tation was 1,340 cells/mm3 (25%). On day 10, fever as reported to date in treated immunocompromised was observed and oxygen therapy was required because patients [1,3–6], have presented the E119V, R292K or of respiratory insufficiency.
    [Show full text]
  • Alpivab, INN-Peramivir
    22 February 2018 EMA/CHMP/148367/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report Alpivab International non-proprietary name: peramivir Procedure No. EMEA/H/C/004299/0000 authorised Note longer Assessment report as adopted by the CHMP with allno information of a commercially confidential nature deleted. Product Medicinal 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Steps taken for the assessment of the product ......................................................... 7 2. Scientific discussion ................................................................................ 8 2.1. Problem statement ............................................................................................... 8 2.1.1. Disease or condition ........................................................................................... 8 2.1.2. Epidemiology and risk factors, screening tools/prevention ...................................... 8 2.1.3. Aetiology and pathogenesis ...............................................................................
    [Show full text]
  • Efficacy of Baloxavir Marboxil on Household Transmission Of
    Umemura et al. Journal of Pharmaceutical Health Care and Sciences (2020) 6:21 https://doi.org/10.1186/s40780-020-00178-4 RESEARCH ARTICLE Open Access Efficacy of baloxavir marboxil on household transmission of influenza infection Takumi Umemura1,2* , Yoshikazu Mutoh2, Takato Kawamura1, Masayuki Saito1, Takahito Mizuno1, Aiko Ota1, Koji Kozaki1, Tetsuya Yamada1, Yoshiaki Ikeda3 and Toshihiko Ichihara2 Abstract Background: Baloxavir marboxil (baloxavir) is a new anti-influenza virus agent that is comparable to oseltamivir phosphate (oseltamivir). Since the efficacy of baloxavir in preventing household transmission of influenza is not well established, we compared the secondary household influenza virus transmission rates between patients on baloxavir vs oseltamivir. Methods: Between October 2018 and March 2019, we enrolled index patients (diagnosed with influenza and treated with baloxavir or oseltamivir) and household members. The secondary attack rate of household members was compared between index patients treated with baloxavir vs oseltamivir. Risk factors of household transmission were determined using multivariate logistic analyses. Results: In total, 169 index patients with influenza type A were enrolled. The median age was 27.0 (interquartile range; 11–57) years. The number of index patients treated with baloxavir and oseltamivir was 49 and 120, respectively. The secondary attack rate was 9.0% (95% confidence interval [CI]: 4.6–15.6) in the baloxavir group and 13.5% (95% CI: 9.8–17.9) in the oseltamivir group. In the multivariate analysis, independent risk factors were 0–6 years of age (odds ratio [OR] 2.78, 95% CI: 1.33–5.82, p < 0.01) and not being on baloxavir treatment.
    [Show full text]
  • RAPIVAB (Peramivir) Injection, for Intravenous Use  See the Full Prescribing Information for Drug Compatibility Information Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION No recommendation for dosage adjustment can be made for pediatric These highlights do not include all the information needed to use patients 6 months to less than 2 years of age with creatinine clearance RAPIVAB safely and effectively. See full prescribing information for less than 50 mL/min (2.2) RAPIVAB. Hemodialysis: Administer after dialysis (2.2) RAPIVAB must be diluted prior to administration (2.3) ® RAPIVAB (peramivir) injection, for intravenous use See the Full Prescribing Information for drug compatibility information Initial U.S. Approval: 2014 (2.4) --------------------------RECENT MAJOR CHANGES-------------------------- ------------------------DOSAGE FORMS AND STRENGTHS------------------- Indications and Usage (1) 01/2021 Injection: 200 mg in 20 mL (10 mg/mL) in a single-use vial (3) Dosage and Administration Dosage in Acute Uncomplicated Influenza (2.1) 01/2021 --------------------------------CONTRAINDICATIONS------------------------------ Dosing in Patients with Renal Impairment (2.2) 01/2021 Patients with known serious hypersensitivity or anaphylaxis to peramivir or Preparation of RAPIVAB for Intravenous Infusion (2.3) 01/2021 any component of RAPIVAB (4) ---------------------------INDICATIONS AND USAGE--------------------------- --------------------------WARNINGS AND PRECAUTIONS---------------------- RAPIVAB is an influenza virus neuraminidase inhibitor indicated for the Cases of anaphylaxis and serious skin/hypersensitivity reactions such treatment of acute uncomplicated influenza
    [Show full text]
  • Development and Effects of Influenza Antiviral Drugs
    molecules Review Development and Effects of Influenza Antiviral Drugs Hang Yin, Ning Jiang, Wenhao Shi, Xiaojuan Chi, Sairu Liu, Ji-Long Chen and Song Wang * Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (H.Y.); [email protected] (N.J.); [email protected] (W.S.); [email protected] (X.C.); [email protected] (S.L.); [email protected] (J.-L.C.) * Correspondence: [email protected] Abstract: Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal out- breaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treat- ment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some refer- ences for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
    [Show full text]
  • Official Title: a Phase III, Randomized, Double-Blind Placebo-Controlled
    Official Title: A Phase III, Randomized, Double-Blind Placebo-Controlled, Multicenter Study To Evaluate the Efficacy and Safety of Baloxavir Marboxil in Combination With Standard-of-Care Neuraminidase Inhibitor in Hospitalized Participants With Severe Influenza NCT Number: NCT03684044 Document Date: Protocol Version 2: 30-May-2019 PROTOCOL TITLE: A PHASE III, RANDOMIZED, DOUBLE-BLIND PLACEBO-CONTROLLED, MULTICENTER STUDY TO EVALUATE THE EFFICACY AND SAFETY OF BALOXAVIR MARBOXIL IN COMBINATION WITH STANDARD-OF-CARE NEURAMINIDASE INHIBITOR IN HOSPITALIZED PATIENTS WITH SEVERE INFLUENZA PROTOCOL NUMBER: CP40617 VERSION NUMBER: 2 EUDRACT NUMBER: 2018-001416-30 IND NUMBER: 126653 TEST PRODUCT: Baloxavir marboxil (RO7191686) MEDICAL MONITOR: M.D. SPONSOR: F. Hoffmann-La Roche Ltd DATE FINAL: Version 1: 17 July 2018 DATES AMENDED: Version 1 (VHP only): 27 November 2018 Version 2: See electronic date stamp below. FINAL PROTOCOL APPROVAL Approver's Name Title Date and Time (UTC) Company Signatory 30-May-2019 16:10:33 CONFIDENTIAL This clinical study is being sponsored globally by F. Hoffmann-La Roche Ltd of Basel, Switzerland. However, it may be implemented in individual countries by Roche’s local affiliates, including Genentech, Inc. in the United States. The information contained in this document, especially any unpublished data, is the property of F. Hoffmann-La Roche Ltd (or under its control) and therefore is provided to you in confidence as an investigator, potential investigator, or consultant, for review by you, your staff, and an applicable Ethics Committee or Institutional Review Board. It is understood that this information will not be disclosed to others without written authorization from Roche except to the extent necessary to obtain informed consent from persons to whom the drug may be administered.
    [Show full text]
  • Development of Effective Anti-Influenza Drugs: Congeners and Conjugates – a Review Jiun-Jie Shie1 and Jim-Min Fang2,3*
    Shie and Fang Journal of Biomedical Science (2019) 26:84 https://doi.org/10.1186/s12929-019-0567-0 REVIEW Open Access Development of effective anti-influenza drugs: congeners and conjugates – a review Jiun-Jie Shie1 and Jim-Min Fang2,3* Abstract Influenza is a long-standing health problem. For treatment of seasonal flu and possible pandemic infections, there is a need to develop new anti-influenza drugs that have good bioavailability against a broad spectrum of influenza viruses, including the resistant strains. Relenza™ (zanamivir), Tamiflu™ (the phosphate salt of oseltamivir), Inavir™ (laninamivir octanoate) and Rapivab™ (peramivir) are four anti-influenza drugs targeting the viral neuraminidases (NAs). However, some problems of these drugs should be resolved, such as oral availability, drug resistance and the induced cytokine storm. Two possible strategies have been applied to tackle these problems by devising congeners and conjugates. In this review, congeners are the related compounds having comparable chemical structures and biological functions, whereas conjugate refers to a compound having two bioactive entities joined by a covalent bond. The rational design of NA inhibitors is based on the mechanism of the enzymatic hydrolysis of the sialic acid (Neu5Ac)-terminated glycoprotein. To improve binding affinity and lipophilicity of the existing NA inhibitors, several methods are utilized, including conversion of carboxylic acid to ester prodrug, conversion of guanidine to acylguanidine, substitution of carboxylic acid with bioisostere, and modification of glycerol side chain. Alternatively, conjugating NA inhibitors with other therapeutic entity provides a synergistic anti-influenza activity; for example, to kill the existing viruses and suppress the cytokines caused by cross-species infection.
    [Show full text]