Study Protocol and Statistical Analysis Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza
Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza Aeron Hurt WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia www.influenzacentre.org NA inhibitor antiviral drugs Top view of NA NA inhibitor NA enzyme active site The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global Peramivir Laninamivir -IV - Inhaled (single) - Japan, - Japan S.Korea, China, US The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global • Came on the market in many countries in 2000 after clinical studies had been conducted among influenza virus–infected patients with uncomplicated illness. • Oseltamivir is market leader ……due to ease of oral administration • Use for seasonal influenza mainly in Japan and US • With human infections of highly pathogenic influenza A(H5N1) virus from 2003 with a high case‐fatality risks of >50%, governments began to consider antiviral drug administration as a key component of their pandemic response • suitable vaccines would not be available Stockpiling for a pandemic • Oseltamivir was simpler (oral) administration than zanamivir (inhalation) and because of systemic effect of oseltamivir was expected to be appropriate for treatment of highly pathogenic viruses • Oseltamivir was suddenly in high demand! • Roche had warned that need to stockpile to guarantee availability • Since 2005, governments of middle‐income and high‐income countries around the world have spent billions of dollars (estimated) stockpiling oseltamivir (US Gov. Accounting Office). 2009 A(H1N1)pdm09 pandemic • The first pandemic of the 21st century occurred unexpectedly in 2009 after the global spread of a novel virus—influenza A(H1N1)pdm09—of swine (rather than avian) origin. -
Influenza: Diagnosis and Treatment
Influenza: Diagnosis and Treatment David Y. Gaitonde, MD; Cpt. Faith C. Moore, USA, MC; and Maj. Mackenzie K. Morgan, USA, MC Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia Influenza is an acute viral respiratory infection that causes significant morbidity and mortality worldwide. Three types of influ- enza cause disease in humans. Influenza A is the type most responsible for causing pandemics because of its high susceptibility to antigenic variation. Influenza is highly contagious, and the hallmark of infection is abrupt onset of fever, cough, chills or sweats, myalgias, and malaise. For most patients in the outpatient setting, the diagnosis is made clinically, and laboratory con- firmation is not necessary. Laboratory testing may be useful in hospitalized patients with suspected influenza and in patients for whom a confirmed diagnosis will change treatment decisions. Rapid molecular assays are the preferred diagnostic tests because they can be done at the point of care, are highly accurate, and have fast results. Treatment with one of four approved anti-influenza drugs may be considered if the patient presents within 48 hours of symptom onset. The benefit of treatment is greatest when antiviral therapy is started within 24 hours of symptom onset. These drugs decrease the duration of illness by about 24 hours in otherwise healthy patients and may decrease the risk of serious complications. No anti-influenza drug has been proven superior. Annual influenza vaccination is recommended for all people six months and older who do not have contraindications. (Am Fam Physician. 2019; 100:online. Copyright © 2019 American Academy of Family Physicians.) Published online November 11, 2019 BEST PRACTICES IN INFECTIOUS DISEASE Influenza is an acute respiratory infection caused by a negative-strand RNA virus of the Orthomyxoviridae fam- Recommendations from the Choosing ily. -
Case Report Prolonged Shedding of Amantadine- and Oseltamivir- Resistant Influenza A(H3N2) Virus with Dual Mutations in an Immunocompromised Infant
Antiviral Therapy 2010 15:1059–1063 (doi: 10.3851/IMP1657) Case report Prolonged shedding of amantadine- and oseltamivir- resistant influenza A(H3N2) virus with dual mutations in an immunocompromised infant Guillermo Ruiz-Carrascoso1*, Inmaculada Casas1, Francisco Pozo1, Marta González-Vincent2, Pilar Pérez-Breña1 1Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain 2Hospital Infantil Universitario Niño Jesús, Madrid, Spain *Corresponding author e-mail: [email protected] In this study, we report a case of multidrug-resistant contained the substitutions E119V in neuraminidase and influenza A(H3N2) virus isolated from an immunosup- V27A in M2, which produce resistance to oseltamivir and pressed patient with prolonged viral shedding. We also adamantanes, respectively. This is the first report of this describe the genetic characterization of the haemagglu- dual mutation pattern in multidrug-resistant influenza tinin, neuraminidase and M2 influenza genes. The virus A(H3N2) virus. Introduction Influenza, which causes significant morbidity and daily because of neurological toxicity). After receiving mortality in immunocompromised patients, is often fludarabine and melphalan as conditioning therapy, he associated with prolonged viral shedding [1,2] underwent allogenic non-identical peripheral blood regardless of vaccination and antiviral therapy. The transplantation from his mother in May 2005 (day 0). multidrug-resistant influenza viruses, including pan- Total lymphocyte cell (TLC) count prior to transplan- demic A(H1N1) and seasonal A(H1N1) and A(H3N2), tation was 1,340 cells/mm3 (25%). On day 10, fever as reported to date in treated immunocompromised was observed and oxygen therapy was required because patients [1,3–6], have presented the E119V, R292K or of respiratory insufficiency. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Efficacy of Baloxavir Marboxil on Household Transmission Of
Umemura et al. Journal of Pharmaceutical Health Care and Sciences (2020) 6:21 https://doi.org/10.1186/s40780-020-00178-4 RESEARCH ARTICLE Open Access Efficacy of baloxavir marboxil on household transmission of influenza infection Takumi Umemura1,2* , Yoshikazu Mutoh2, Takato Kawamura1, Masayuki Saito1, Takahito Mizuno1, Aiko Ota1, Koji Kozaki1, Tetsuya Yamada1, Yoshiaki Ikeda3 and Toshihiko Ichihara2 Abstract Background: Baloxavir marboxil (baloxavir) is a new anti-influenza virus agent that is comparable to oseltamivir phosphate (oseltamivir). Since the efficacy of baloxavir in preventing household transmission of influenza is not well established, we compared the secondary household influenza virus transmission rates between patients on baloxavir vs oseltamivir. Methods: Between October 2018 and March 2019, we enrolled index patients (diagnosed with influenza and treated with baloxavir or oseltamivir) and household members. The secondary attack rate of household members was compared between index patients treated with baloxavir vs oseltamivir. Risk factors of household transmission were determined using multivariate logistic analyses. Results: In total, 169 index patients with influenza type A were enrolled. The median age was 27.0 (interquartile range; 11–57) years. The number of index patients treated with baloxavir and oseltamivir was 49 and 120, respectively. The secondary attack rate was 9.0% (95% confidence interval [CI]: 4.6–15.6) in the baloxavir group and 13.5% (95% CI: 9.8–17.9) in the oseltamivir group. In the multivariate analysis, independent risk factors were 0–6 years of age (odds ratio [OR] 2.78, 95% CI: 1.33–5.82, p < 0.01) and not being on baloxavir treatment. -
Synergistic Immunostimulating Activity of Pidotimod and Red Ginseng Acidic Polysaccharide Against Cyclophosphamide-Induced Immunosuppression
Arch Pharm Res Vol 31, No 9, 1153-1159, 2008 DOI 10.1007/s12272-001-1282-6 http://apr.psk.or.kr Synergistic Immunostimulating Activity of Pidotimod and Red Ginseng Acidic Polysaccharide against Cyclophosphamide-induced Immunosuppression Xiao Fei Du, Cheng Zhe Jiang1, Chun Fu Wu, Eun Kyung Won1, and Se Young Choung1 Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China and 1Department of Hygienic Chemis- try and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Korea (Received May 6, 2008/Revised July 22, 2008/Accepted September 5, 2008) We investigated the synergistic effect of combined treatment with red ginseng acidic polysaccharide (RGAP) from Panax ginseng C.A. Meyer and pidotimod in cyclophosphamide-treated mice. The combination of pidotimod and RGAP restored concanavalin A-induced splenic T cell proliferation and LPS-stimulated B cell proliferation significantly. The production of nitric oxide from peritoneal macrophages was increased by the combinations. NK cell activity was increased by RGAP alone or in combination with pidotimod. A synergistic increase in the level of serum IL-12 and interferon- gamm was observed when the combination of the two was used. RGAP alone or in combination with pidotimod modulated the level of serum C-reactive protein to a near-normal level. These results indi- cate that combinations of pidotimod and RGAP are synergistic and suggest that combination therapy using pidotimod and RGAP for improving immune activity may provide an additional benefit over the use of the two drugs by themselves. Key words: Panax ginseng C.A. Meyer, Red ginseng acidic polysaccharide, Pidotimod, Cyclophos- phamide, Immunostimulation, Combination INTRODUCTION et al., 1989), hypoglycemic activities (Konno et al., 1985; Konno et al., 1983), and antitumor activities (Lee et al., Panax ginseng C.A. -
Aspects of the Usage of Antineoplastic and 1Mmunomodulating Agents in a Section of the Private Health Care Sector
ASPECTS OF THE USAGE OF ANTINEOPLASTIC AND 1MMUNOMODULATING AGENTS IN A SECTION OF THE PRIVATE HEALTH CARE SECTOR Wilmarie Rheeders B. Pharm Dissertation submitted in Pharmacy Practice, School of Pharmacy at the Faculty of Health Sciences of the North-West University, Potchefstroom, in partial fulfilment of the requirements for the degree Magister Pharmaciae. Supervisor: Prof M.S. Lubbe Co-supervisor: Dr. J.L. Duminy Co-supervisor: Prof. M.P. Stander Potchefstroom November 2008 For all things are from Him, by Him, and for Him. Glory belongs to Him forever! Amen. (Rom. 11:36) ACKNOWLEDGEMENTS To my Lord and Father whom I love, all the Glory! He gave me the strength, insight and endurance to finish this study. 1 also want to express my sincere appreciation to the following people that have contributed to this dissertation: • To Professor M.S. Lubbe, in her capacity as supervisor of this dissertation, my appreciation for her expert supervision, advice and time she invested in this study. • To Dr. J.L Duminy, oncologist and co-supervisor, for all the useful advice, assistance and time he put aside in the interest of this dissertation. • To Professor M.P. Stander, in his capacity as co-supervisor of this study. • To Professor J.H.P. Serfontein, for his guidance, time, effort and advice. • To the Department of Pharmacy Practice as well as the NRF for the technical and financial support. • To Anne-Marie, thank you for your patience, time and continuous effort you put into the data. • To the Pharmacy Benefit Management company for providing the data for this dissertation. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department -
Development of Effective Anti-Influenza Drugs: Congeners and Conjugates – a Review Jiun-Jie Shie1 and Jim-Min Fang2,3*
Shie and Fang Journal of Biomedical Science (2019) 26:84 https://doi.org/10.1186/s12929-019-0567-0 REVIEW Open Access Development of effective anti-influenza drugs: congeners and conjugates – a review Jiun-Jie Shie1 and Jim-Min Fang2,3* Abstract Influenza is a long-standing health problem. For treatment of seasonal flu and possible pandemic infections, there is a need to develop new anti-influenza drugs that have good bioavailability against a broad spectrum of influenza viruses, including the resistant strains. Relenza™ (zanamivir), Tamiflu™ (the phosphate salt of oseltamivir), Inavir™ (laninamivir octanoate) and Rapivab™ (peramivir) are four anti-influenza drugs targeting the viral neuraminidases (NAs). However, some problems of these drugs should be resolved, such as oral availability, drug resistance and the induced cytokine storm. Two possible strategies have been applied to tackle these problems by devising congeners and conjugates. In this review, congeners are the related compounds having comparable chemical structures and biological functions, whereas conjugate refers to a compound having two bioactive entities joined by a covalent bond. The rational design of NA inhibitors is based on the mechanism of the enzymatic hydrolysis of the sialic acid (Neu5Ac)-terminated glycoprotein. To improve binding affinity and lipophilicity of the existing NA inhibitors, several methods are utilized, including conversion of carboxylic acid to ester prodrug, conversion of guanidine to acylguanidine, substitution of carboxylic acid with bioisostere, and modification of glycerol side chain. Alternatively, conjugating NA inhibitors with other therapeutic entity provides a synergistic anti-influenza activity; for example, to kill the existing viruses and suppress the cytokines caused by cross-species infection.