The Rinconada and Related Faults in the Southern Coast Ranges, California, and Their Tectonic Significance

Total Page:16

File Type:pdf, Size:1020Kb

The Rinconada and Related Faults in the Southern Coast Ranges, California, and Their Tectonic Significance The Rinconada and Related Faults in the Southern Coast Ranges, California, and Their Tectonic Significance GEOLOGICAL SURVEY PROF-ESSIONAL PAPER 981 The Rinconada and Related Faults in the Southern Coast Ranges, California, and Their Tectonic Significance By THOMAS W. DIBBLEE, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 981 A study of the Rinconada fault and its relation to other nearby major faults and to the tectonics of the southern Coast Ranges UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Sun-tan GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Dibblee, Thomas Wilson The Rinconada and related faults in the southern coast ranges, California, and their tectonic significance. (Geological Survey Professional Paper 981) Bibliography: p. 53-55. Supt. of Docs, no.: I 19.16:981 1. Faults (Geology) California Coast Range. I. Title: The Rinconada and related faults in the southern coast ranges, California. II. Series: United States Geological Survey Professional Paper 981. QE606.5.U6D5 551.8'7 76-608324 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02908-1 CONTENTS Page Page Abstract __________________________________________________ 1 Segments of the Rinconada fault Continued Introduction ____________________________________________ 1 Relationship of Rinconada fault to Jolon and related Location of the Rinconada fault __________________ 1 faults __________________ _ 29 Purpose and scope _______________________________ 2 Geophysical expression of the Rinconada fault ____ ____ 32 Acknowledgments-_______________________________ 2 Reliz fault ________________________________________________ 32 Major geologic relations of the Rinconada fault ______________ 2 King City fault ______________________________________ 32 Nomenclature and definition__________________________ 2 Reliz fault in Arroyo Seco area________________________ 33 Regional relations _______________________________ 6 Reliz fault at base of Sierra de Salinas __________________ 34 Concealed position of southwestern border of the Salinian Possible northwestward extension of the Reliz fault _____ 34 block__________________________________ 8 Regional evidence of large strike-slip movement on the Rin- Rock units ________________________________________ 9 conada-Reliz fault zone ____________________________ 36 Crystalline rocks ______________________________ 9 Movements in Quaternary time _______________________ 36 Franciscan rocks __________________________________ 9 Movements in Pliocene time _________________________ 36 Upper Jurassic(?) and Cretaceous marine sedimentary se­ Movements since early Miocene time ____________________ 36 quence _______________________________________ 12 Movements in Oligocenel?) time ___________________ 38 Upper Cretaceous and lower Tertiary marine sedimentary Possible movements in pre-Late Cretaceous time ______ 38 sequence ___________________________________ 12 Strike-slip movement as suggested by configuration of Middle Tertiary sedimentary sequence ______________ 13 buried surface of basement complex ________________ 40 Upper Tertiary sedimentary sequence ________________ 16 Regional tectonics along and near the Rinconada-Reliz fault Valley sediments ____________________________ 16 zone ________________________-_-_--__-__--_--____---- 40 Surficial deposits ______________________________ 19 Concepts of tectonic evolvement of the Coast Ranges ____ 40 Segments of the Rinconada fault __________________________ 19 Tectonic pattern _______________________________ 42 Rinconada fault (Nacimiento segment) from San Rafael Tectonic features of the east strip ____________________ 44 Mountains to Pozo area ___------._______________-_.____ 19 Tectonic features of the west strip _________________ 44 Other faults near and possibly related to the Nacimiento Regional tectonic analysis ______________________________ 46 segment of the Rinconada fault ____________________ 20 Regional significance of the Rinconada-Reliz fault zone _ 48 Rinconada fault (Rinconada segment) from Rinconada mine Effect of Rinconada-Reliz fault zone on physiography and drain­ to Paso Robles _________________________ 21 age ____________________________________ 52 Rinconada fault (San Marcos segment) from Paso Robles to Possible seismic activity___________________________ 52 San Antonio Reservoir ____________________________ 23 References cited _________________________________ 53 Rinconada fault (Espinosa segment) from San Antonio Res­ ervoir to Reliz Canyon ______________________ 25 ILLUSTRATIONS Page FIGURE 1. Index map showing positions of the Rinconada and Reliz faults relative to the Salinian block and the San Andreas fault ______________________________________________________________ 2 2. Map showing physiographic features and drainages along and near the Rinconada and Reliz faults ____ __ __ 3 3. Map showing nomenclature of some major faults in part of southern Coast Ranges ____ ____________ _ 5 4. Map showing geologic setting of the Rinconada and Reliz faults ______________________________________________ 7 5. Diagram showing major rock units of the Coastal block within area of figures 1, 2 and 4 _____ ________________ 10 6. Diagram showing major rock units of the Salinian block within area of figures 1, 2 and 4__-__-__-_____ __ ---_ 11 7-21. Maps showing: 7. Geology along and near the Rinconada fault (Nacimiento segment) from Big Pine Mountain to Timber Peak _____________________________________________________________ 17 8. Geology along and near the Rinconada fault (Nacimiento segment) from Timber Peak to Pozo ____________ 18 9. Geology along and near the Rinconada fault (Rinconada segment) from the Rinconada mine to Paso Robles ____ 22 10. Geology along and near the Rinconada fault (San Marcos segment) from Paso Robles to San Antonio Reser­ voir ______________________________________________________________________________________________ 24 11. Stream-channels deflected possibly by right-lateral movement on the Rinconada fault (San Marcos segment) northwest of Paso Robles ________________________________________________ ____ __ __ 26 12. Geology along and near the Rinconada fault (Espinosa segment) between Lockwood and Salinas Valleys __ 27 in IV CONTENTS FIGURES 7-21. Maps showing Continued Page 13. Geology along and near the Rinconada fault (Espinosa segment) and Reliz fault, near King City and Greenfield __________________________________________________________________________________ 28 14. Stream channels of canyons deflected possibly by right-lateral movement of the Rinconada fault (Espinosa segment) near Lockwood ____________________________________________________________________ 30 15. Geology of the northern Santa Lucia Mountains, a segment of the Salinian block elevated on the Reliz fault and many other parallel faults ____-___-_____-___-______________-______________---_----_-____-___ 35 16. Inferred displacement of lower Pliocene (unit 1, Pancho Rico Formation) and upper Miocene (unit 2, Santa Margarita Formation) by right lateral strike-slip movement on the Rinconada fault______________ 37 17. Pre-Oligocene rocks of the Salinian block, possibly displaced by right-lateral movement of the Rinconada- Reliz fault zone _______________________________________________------_---__-____-___________ 39 18. Inferred configuration of buried surface of crystalline basement complex along Rinconada-Reliz fault zone from Paso Robles to Greenfield ________________________________________ 41 19. Right-slip tectonics and compressive upheaval along the Espinosa segment of the Rinconada fault ___ __ 42 20. Major tectonic features of the southern Coast Range region in vicinity of the Rinconada-Reliz fault zone __ 43 21. Geology of the upper Nacimiento River area and vicinity ___________________________ _ 47 22. Block diagram illustrating mechanics of conversion of strike-slip movement along a high angle fault into compressive uplift of one block as fault terminates ____--_---_-__-______-_____-__-__-________________________________ 43 23. Map showing inferred tectonic movements in vicinity of northern Santa Lucia Mountains showing conversion of right-slip movements near ends of Rinconada-Reliz fault zone and San Gregorio fault into crustal compression and uplift of intervening area to form these mountains ________________________________________________ 50 24. Map showing inferred tectonic movements in vicinity of Sierra Madre Mountains and Pine Mountain, showing inferred conversion of right-slip movements near ends of the Rinconada and San Gabriel faults to crustal com­ pression to form these ranges ______________________________________________-_--_-__-__-___-------_-____ 51 THE RINCONADA AND RELATED FAULTS IN THE SOUTHERN COAST RANGES, CALIFORNIA, AND THEIR TECTONIC SIGNIFICANCE By THOMAS W. DIBBLEE, JR. ABSTRACT The northern part of the strip within the Salinian block east of the The Rinconada fault near Santa Margarita, as depicted on the Rinconada-Reliz fault zone reacted to stress during late Cenozoic Geologic Map of California, is a northwest-trending high-angle fault time as a rigid block of crystalline basement that was tilted slightly about 40 km (26 mi) long that in part separates terranes with differ­ southwestward from an axis adjacent to the San Andreas fault to ent basement complexes. The terrane on the northeast is part of the form the Gabilan uplift and Salinas Valley. The
Recommended publications
  • Late Cenozoic Tectonics of the Central and Southern Coast Ranges of California
    OVERVIEW Late Cenozoic tectonics of the central and southern Coast Ranges of California Benjamin M. Page* Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 George A. Thompson† Department of Geophysics, Stanford University, Stanford, California 94305-2215 Robert G. Coleman Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 ABSTRACT within the Coast Ranges is ascribed in large Taliaferro (e.g., 1943). A prodigious amount of part to the well-established change in plate mo- geologic mapping by T. W. Dibblee, Jr., pre- The central and southern Coast Ranges tions at about 3.5 Ma. sented the areal geology in a form that made gen- of California coincide with the broad Pa- eral interpretations possible. E. H. Bailey, W. P. cific–North American plate boundary. The INTRODUCTION Irwin, D. L. Jones, M. C. Blake, and R. J. ranges formed during the transform regime, McLaughlin of the U.S. Geological Survey and but show little direct mechanical relation to The California Coast Ranges province encom- W. R. Dickinson are among many who have con- strike-slip faulting. After late Miocene defor- passes a system of elongate mountains and inter- tributed enormously to the present understanding mation, two recent generations of range build- vening valleys collectively extending southeast- of the Coast Ranges. Representative references ing occurred: (1) folding and thrusting, begin- ward from the latitude of Cape Mendocino (or by these and many other individuals were cited in ning ca. 3.5 Ma and increasing at 0.4 Ma, and beyond) to the Transverse Ranges. This paper Page (1981).
    [Show full text]
  • Lithosphere.Gsapubs.Org on August 2, 2011
    Downloaded from lithosphere.gsapubs.org on August 2, 2011 Lithosphere Arkosic rocks from the San Andreas Fault Observatory at Depth (SAFOD) borehole, central California: Implications for the structure and tectonics of the San Andreas fault zone Sarah Draper Springer, James P. Evans, John I. Garver, David Kirschner and Susanne U. Janecke Lithosphere 2009;1;206-226 doi: 10.1130/L13.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Lithosphere Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2009 Geological Society of America Downloaded from lithosphere.gsapubs.org on August 2, 2011 Arkosic rocks from the San Andreas Fault Observatory at Depth (SAFOD) borehole, central California: Implications for the structure and tectonics of the San Andreas fault zone Sarah Draper Springer,1* James P.
    [Show full text]
  • Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults
    Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, California By DONALD C. ROSS U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 A summary of basement-rock relations and problems that relate to possible reconstruction of the Salinian block before movement on the San Andreas fault UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Boss, Donald Clarence, 1924- Possible correlations of basement rocks across the San Andreas, San Gregrio-Hosgri, and Rinconada-Reliz-King City faults, California (U.S. Geological Survey Bulletin 1317) Bibliography: p. 25-27 Supt. of Docs, no.: 119.16:1317 1. Geology, structural. 2. Geology California. 3. Faults (geology) California. I. Title. II. Series: United States. Geological Survey. Professional Paper 1317. QE601.R681984 551.8'09794 84-600063 For sale by the Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett St., Alexandria, VA 22304 CONTENTS Page Abstract _____________________________________________________________ 1 Introduction __________________________________________________________ 1 San Gregorio-Hosgri fault zone ___________________________________________ 3 San Andreas
    [Show full text]
  • Attachment 6. Phase I
    PHASE I ENVIRONMENTAL SITE ASSESSMENT AND LIMITED PHASE II SOIL TEST¡NG MONTEREY-SALI NAS TRANSIT SOUTH COUNTY OPERATIONS AND MAINTENANCE FACITITY KING CITY EAST RANCH BUSINESS PARK, APN 026-521.03I KING CITY, CATIFORNIA June8,2OI7 Prepared for Denise Duffy and Associates, lnc Prepared by Earth Systems Pacific 500 Park Center Drive, Suite L Hollister, CA 95023 Copyright @ 2017 Earth Systems Pacific 500 Park Center Drive, Ste.1 Hollister, CA 95023 Ph: 83L-637-2133 esp@eâ rthsystems.com www.ea rthsystems.com June 8,2017 File No.: SH-13325-EA Ms. Erin Harwayne Denise Duffy and Associates, lnc. 947 Cass Street, Suite #5 Monterey, CA 93940 PROJECT: MONTEREY-SALINAS TRANSIT - SOUTH COUNTY OPERATIONS AND MAINTENANCE FACILITY KING CITY EAST RANCH BUSINESS PARK, APN 026-521.-O3L KING CITY, CALIFORNIA SUBJECT: Report of Phase I Environmental Site Assessment and Limited Phase ll SoilTesting Dear Ms. Harwayne: As authorized by Denise Duffy and Associates, lnc., Earth Systems Pacific (ESP) has completed this Phase I Environmental Site Assessment (ESA) and Limited Phase ll SoilTesting at the above- referenced site. lt was prepared to stand as a whole, and no part should be excerpted or used in exclusion of any other part. This project was conducted in accordance with our proposal dated April 12, 20L7. lf you have any questions regarding this report or the information contained herein, please contact the undersigned at your convenience. I declare that I meet the definition of an Environmental Professional as defined in 40CFR 3L2.tO. I have the specific qualifications based on education, training and experience to assess a property of the nature, history and setting of the subject site.
    [Show full text]
  • Fault Zone, Coastal California—Geologic Evidence and Tectonic Implications: Geological Society of Qms Drakes Estero Afem Subsidence
    U.S. Department of the Interior Open-File Report 2015–1114 U.S. Geological Survey Sheet 10 of 10 Pamphlet accompanies map 123°5' 123°0' 122°55' Tu Qf Qf Tl Qmsf Tu Qds Qms Qed Tsm Qls? 20 123°20 123° Tsm Qf Tsm Qms Tu Tu adf Qls Qmsf Qmsd Tm Qms adf Tm Qf Qls? Qoa Tm Tm Qf adf Qmsf adf Tsm Qls? Qls? Qf Tu Qmt adf Qmsf Qoa Qed adf CALIF. Qoa Qls? Qmsd Qe Tu Qed Qls Tu Qls? Kgr Tu Tu Tm afem Qms Tu Qoa MAP LOCATION Qmsf Qms Qls? Qls? 60 Qmsd Qmsf adf Tm Area of Qms Tu Qmsd Qls? Map adf Qmsf Qms Qms Tu Qf Tu Qmsd 38°20' Qms Qoa? Qoa adf Bodega Qms adf Bodega adf adf Qf Tm Harbor 38°5' 38°5' Bay Qmsd Tl 60 Qoa Qmsd alf Tu Qmsd Qds adf afem Tm Tomales Bay Qls? Qf adf Qls? Qls? Qoa Tm Tsm Tsm Qoa Qed Limit of California’s Qf State Waters Tu Tu Qmsd Kgr Qmsd 10 Qf Qms Qobs Qls Tm adf Qms Tpr Tu Qmsd adf Point Reyes Tu af 38° Area of Qf Tl Map Point Reyes Qms Tu Qmsd Qls? Qf Qed Qoa Qls Qls? Tp Tsm CORRELATION OF MAP UNITS 0 5 10 Tpr Qms Qf Kilometers Qms Tp Tu Qls [See Description of Map Units (chapter 8, in pamphlet) for precise unit ages] Nautical Miles Qmsd 0 5 10 Qed Qls? Qmsc Qf Qe Tm OFFSHORE GEOLOGIC AND GEOMORPHIC UNITS ONSHORE GEOLOGIC AND GEOMORPHIC UNITS Tu Tu Qf Qf Tpr 60 Qls adf afem Tsm Qmsd Qoa Qsr Qms Qmsc Qmsf Qmsd Qmsw adf af afem alf Qbs Qa Tu Qobs Qf Qds Qe Qed Qf Qoa Holocene Tpr 60 Tu Qls? Qf Qms Qls QUATERNARY Tpr Qls Qmt Qobs Qms Qf Pleistocene Qf adf adf Qms Qms Qmsd Qls? Tm Pliocene Qls adf Qf adf Tp Tp Tpr 60 Qed Tsm Tsm Qms Qms Qe Tu Tm Tl Tu Qoa Miocene TERTIARY Qf Tu adf Qls Qms Qmsd adf Qls Qms Qf 60 Tu Qls Qa Qf Tpr Tpr Paleocene Qmsd Qf adf Qms Qmsd Qds Late Qf Kgg Kgg Kgr CRETACEOUS Qmsd Qe Qf Qf Cretaceous adf 50 Qms Qls Tpr Qmsd alf Qmsd Qf Qmsd adf Qf adf Qls? Qls? Qms Qmsd adf Tp Qf Qf LIST OF MAP UNITS Tectonic influences that affect shelf morphology and geology are local faulting, folding, uplift, and fault zone, coastal California—Geologic evidence and tectonic implications: Geological Society of Qms Drakes Estero afem subsidence.
    [Show full text]
  • Geologic Map of the Northwestern Caliente Range, San Luis Obispo County, California
    USGS L BRARY RESTON 1111 111 1 11 11 II I I II 1 1 111 II 11 3 1818 0001k616 3 DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geologic map of the northwestern Caliente Range, San Luis Obispo County, California by J. Alan Bartowl Open-File Report 88-691 This map is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by USGS 'Menlo Park, CA 1988 it nedelitil Sow( diSti) DISCUSSION INTRODUCTION The map area lies in the southern Coast Ranges of California, north of the Transverse Ranges and west of the southern San Joaquin Valley. This region is part of the Salinia-Tujunga composite terrane that is bounded on the northeast by the San Andreas fault (fig. 1) and on the southwest by the Nacimiento fault zone (Vedder and others, 1983). The Chimineas fault of this map is inferred to be the boundary between the Salinia and the Tujunga terranes (Ross, 1972; Vedder and others, 1983). Geologic mapping in the region of the California Coast Ranges that includes the area of this map has been largely the work of T.W. Dibblee, Jr. Compilations of geologic mapping at a scale of 1:125,000 (Dibblee, 1962, 1973a) provide the regional setting for this map, the northeast border of which lies about 6 to 7 km southwest of the San Andreas fault. Ross (1972) mapped the crystalline basement rocks in the vicinity of Barrett Creek, along the northeast side of the Chimineas fault ("Barrett Ridge" of Ross, 1972).
    [Show full text]
  • Temporal and Spatial Trends of Late Cretaceous-Early Tertiary Underplating of Pelona and Related Schist Beneath Southern California and Southwestern Arizona
    spe374-14 page 1 of 26 Geological Society of America Special Paper 374 2003 Temporal and spatial trends of Late Cretaceous-early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona M. Grove Department of Earth and Space Sciences, University of California, 595 Charles Young Drive E, Los Angeles, California 90095-1567, USA Carl E. Jacobson Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA Andrew P. Barth Department of Geology, Indiana University–Purdue University, Indianapolis, Indiana 46202-5132, USA Ana Vucic Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA ABSTRACT The Pelona, Orocopia, and Rand Schists and the schists of Portal Ridge and Sierra de Salinas constitute a high–pressure-temperature terrane that was accreted beneath North American basement in Late Cretaceous–earliest Tertiary time. The schists crop out in a belt extending from the southern Coast Ranges through the Mojave Desert, central Transverse Ranges, southeastern California, and southwest- ern Arizona. Ion microprobe U-Pb results from 850 detrital zircons from 40 meta- graywackes demonstrates a Late Cretaceous to earliest Tertiary depositional age for the sedimentary part of the schist’s protolith. About 40% of the 206Pb/238U spot ages are Late Cretaceous. The youngest detrital zircon ages and post-metamorphic mica 40Ar/39Ar cooling ages bracket when the schist’s graywacke protolith was eroded from its source region, deposited, underthrust, accreted, and metamorphosed. This interval averages 13 ± 10 m.y. but locally is too short (<~3 m.y.) to be resolved with our methods.
    [Show full text]
  • Creek Stewardship Guide for San Luis Obispo County Was Adapted from the Sotoyome Resource Conservation District’S Stewardship Guide for the Russian River
    Creek Stewardship Guide San Luis Obispo County 65 South Main Street Suite 107 Templeton, CA 93465 805.434.0396 ext. 5 www.US-LTRCD.org Acknowledgements The Creek Stewardship Guide for San Luis Obispo County was adapted from the Sotoyome Resource Conservation District’s Stewardship Guide for the Russian River. Text & Technical Review Sotoyome Resource Conservation District, Principal Contributor Melissa Sparks, Principal Contributor National Resource Conservation District, Contributor City of Paso Robles, Contributor Terra Verde Environmental Consulting, Reviewer/Editor Coastal San Luis Resource Conservation District, Reviewer/Editor Monterey County Resource Conservation District, Reviewer/Editor San Luis Obispo County Public Works Department, Reviewer/Editor Atascadero Mutual Water Company, Reviewer Photographs Carolyn Berg Terra Verde Environmental Consulting US-LT RCD Design, Editing & Layout Scott Ender Supporting partner: December 2012 Table of Contents 1 INTRODUCTION 2 RESOURCE CONSERVATION DISTRICTS IN SAN LUIS OBISPO COUNTY 3 WATERSHEDS OF SAN LUIS OBISPO COUNTY 3 Climate 4 Unique & Diverse Watersheds & Sub-Watersheds of San Luis Obispo County 7 Agriculture in San Luis Obispo County Watersheds 8 WHAT YOU CAN DO TO HELP SAN LUIS OBISPO’S CREEKS 9 Prevent & Control Soil Erosion 11 Properly Maintain Unsurfaced Roads and Driveways 13 Restore Native Riparian Vegetation 14 Remove Exotic Species 14 Enhance Instream Habitat 15 Avoid Creating Fish Passage Barriers 15 Conserve Water 16 Control Stormwater Runoff 16 Maintain Septic Systems
    [Show full text]
  • Conservation and Open Space Element Appendices
    County of San Luis Obispo General Plan Conservation and Open Space Element Appendices May 2010 San Luis Obispo County Department of Planning and Building ® County of San Luis Obispo General Plan Conservation and Open Space Element Appendices Adopted by the San Luis Obispo County Board of Supervisors May 11, 2010 - Resolution 2010-151 San Luis Obispo County Department of Planning and Building ® ® TOC TABLE OF CONTENTS Appendix 1. Air Quality Resources Introduction ......................................................................... A1.1 Local Setting ....................................................................... A1.1 Regulatory Framework ....................................................... A1.9 Climate Change ................................................................ A1.20 References ....................................................................... A1.30 Appendix 2. Community-Wide and County Government Operations 2006 Baseline Greenhouse Gas Emissions Inventory Executive Summary ............................................................ A2.1 Community-Wide GHG Inventory Results ........................... A2.2 County government operations GHG Inventory Results ..... A2.2 Data limitations ................................................................... A2.3 Forecast and Next Steps .................................................... A2.4 1. Introduction ................................................................... A2.6 2. Community and County Government Operations Inventory Methodology ..............................................................
    [Show full text]
  • 1 Collections
    A. andersonii A. Gray SANTA CRUZ MANZANITA San Mateo Along Skyline Blvd. between Gulch Road and la Honda Rd. (A. regismontana?) Santa Cruz Along Empire Grade, about 2 miles north of its intersection with Alba Grade. Lat. N. 37° 07', Long. 122° 10' W. Altitude about 2550 feet. Santa Cruz Aong grade (summit) 0.8 mi nw Alba Road junction (2600 ft elev. above and nw of Ben Lomond (town)) - Empire Grade Santa Cruz Near Summit of Opal Creek Rd., Big Basin Redwood State Park. Santa Cruz Near intersection of Empire Grade and Alba Grade. ben Lomond Mountain. Santa Cruz Along China Grade, 0.2 miles NW of its intersection with the Big Basin-Saratoga Summit Rd. Santa Cruz Nisene Marks State Park, Aptos Creek watershed; under PG&E high-voltage transmission line on eastern rim of the creek canyon Santa Cruz Along Redwood Drive 1.5 miles up (north of) from Monte Toyon Santa Cruz Miller's Ranch, summit between Gilroy and Watsonville. Santa Cruz At junction of Alba Road and Empire Road Ben Lomond Ridge summit Santa Cruz Sandy ridges near Bonny Doon - Santa Cruz Mountains Santa Cruz 3 miles NW of Santa Cruz, on upper UC Santa Cruz campus, Marshall Fields Santa Cruz Mt. Madonna Road along summit of the Santa Cruz Mountains. Between Lands End and Manzanitas School. Lat. N. 37° 02', Long. 121° 45' W; elev. 2000 feet Monterey Moro Road, Prunedale (A. pajaroensis?) A. auriculata Eastw. MT. DIABLO MANZANITA Contra Costa Between two major cuts of Cowell Cement Company (w face of ridge) - Mount Diablo, Lime Ridge Contra Costa Immediately south of Nortonville; 37°57'N, 121°53'W Contra Costa Top Pine Canyon Ridge (s-facing slope between the two forks) - Mount Diablo, Emmons Canyon (off Stone Valley) Contra Costa Near fire trail which runs s from large spur (on meridian) heading into Sycamore Canyon - Mount Diablo, Inner Black Hills Contra Costa Off Summit Dr.
    [Show full text]
  • October 3, 2018
    Cuyama Valley Groundwater Basin Groundwater Sustainability Plan Hydrogeologic Conceptual Model Draft Prepared by: October 2018 Table of Contents Chapter 2 Basin Setting .......................................................................................................2-2 Acronyms 2-3 2.1 Hydrogeologic Conceptual Model ..........................................................................2-4 2.1.1 Useful Terminology ................................................................................................2-4 2.1.2 Regional Geologic and Structural Setting ..............................................................2-5 2.1.3 Geologic History ....................................................................................................2-5 2.1.4 Geologic Formations/Stratigraphy .........................................................................2-8 2.1.5 Faults and Structural Features ............................................................................. 2-17 2.1.6 Basin Boundaries ................................................................................................ 2-26 2.1.7 Principal Aquifers and Aquitards .......................................................................... 2-26 2.1.8 Natural Water Quality Characterization ................................................................ 2-32 2.1.9 Topography, Surface Water and Recharge .......................................................... 2-36 2.1.10 Hydrogeologic Conceptual Model Data Gaps .....................................................
    [Show full text]
  • Point Lobos State Natural Reserve National Natural Landmark 1967
    GEOLOGICAL GEMS OF CALIFORNIA STATE PARKS | GEOGEM NOTE 19 Point Lobos State Natural Reserve National Natural Landmark 1967 Salinia—An Exotic Terrane Two contrasting rock types occur at Point Lobos State Natural Reserve. The granitic-rock (porphyritic granodiorite Features: of Monterey) and the sedimentary Carmelo Formation are Petrology of an exotic terrane part of the Salinian block, a strip along California’s Coast along the plate boundary Ranges, bounded by the San Andreas Fault on the east and other faults on the west. The Salinian block is distinguished by a geologic makeup and history dramatically different from adjacent areas on opposite sides of the terrane-bounding faults. Unraveling the mystery of how this odd block of rocks came to occupy the California coast confounded geologists until the 1960s, when the theory of plate tectonics began to be accepted. Recognizing that the Salinian block as a displaced fragment of the earth’s crust was a giant step forward, but the origin of this “suspect terrane” remained to be solved. Point Lobos State Natural Reserve GeoGem Note 19 What you can see: The unspoiled coastline at the reserve offers fabulous exposures of two contrasting bedrock units: igneous granitic rock (80 to 100 million years old) and much younger sedimentary rock (60 millions years old). The granodiorite solidified about 80 to 100 million years ago during the Cretaceous Period, crystallizing from a pool of slowly cooling magma (molten rock) buried deep beneath the earth’s surface. The distinctive salt-and-pepper appearance is due to a mix of light (quartz and feldspar) and dark (hornblende and biotite) colored minerals.
    [Show full text]