Asymmetric Cyclization Reactions Through an Enamine/Acid Cooperative Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc. -
Non-Covalent DNA-Binding Ruthenium Anticancer Drugs
Non-Covalent DNA-Binding Ruthenium Anticancer Drugs Anna Łęczkowska A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy School of Chemistry College of Engineering and Physical Sciences The University of Birmingham June 2011 I University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ACKNOWLEDGMENTS I would like to express my deep gratitude to all the people who provided me with their help and support during my PhD. I would like to acknowledge Prof. Mike Hannon for having me in his group and giving me many great opportunities to participate in a number of conferences and scientific events. Prof. Kevin Chipman, Dr. Chris Bunce and Dr. Nik Hodges and their groups and all those with whom I shared time in Biosciences laboratories are very gratefully acknowledged, especially Dr. Farhat Khanim for giving me much useful advice for cell tests and biological studies. Many thanks are also due to Dr. Louise Male who solved the crystal structures of my compounds, Dr. Neil Spencer for his help with NMR experiments and Peter Ashton for mass spectrometry. -
Biotin and Development of Some Useful Synthetic Methodologies
SYNTHETIC STUDIES TOWARDS D(+)-BIOTIN AND DEVELOPMENT OF SOME USEFUL SYNTHETIC METHODOLOGIES THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY) BY Mr. CH. AMAR GOPAL DIVISION OF ORGANIC CHEMISTRY: TECHNOLOGY NATIONAL CHEMICAL LABORATORY PUNE – 411 008 (INDIA) APRIL 2001 Total Synthesis Of D(+)-Biotin: A Review Form-A CERTIFICATE Certified that the work incorporated in the thesis entitled “Synthetic Studies Towards D(+)-Biotin And Development Of Some Useful Synthetic Methodologies” by Mr CH. AMAR GOPAL was carried out by him under my supervision. Such material as has been obtained from other sources has been duly acknowledged in the thesis. April 2001 S. P. Chavan PUNE Research Guide 2 Total Synthesis Of D(+)-Biotin: A Review With Love To My Parents 3 Total Synthesis Of D(+)-Biotin: A Review Contents Page No. Acknowledgements i General Remarks iii Abbreviations iv Abstract v Chapter 1: Synthetic studies towards D(+)-biotin Section 1: Total synthesis of biotin: A review 1.1.1 Introduction 1 1.1.1a Structure determination 1 1.1.1b Biosynthesis 2 1.1.1c Biotin deficiency 2 1.1.2 Earlier approaches 6 1.1.3 References 27 Section 2: Reductive cleavage of C-S bond: Crucial intermediates for D(+)-biotin 1.2.1 Introduction 30 1.2.2 Retrosynthetic analysis 31 1.2.3 Results and discussion 31 1.2.4 Experimental 45 1.2.5 References 52 Section 3: 5,5 -Fused systems for D(+)-biotin systems 1.3.1 Introduction 53 1.3.2 Results and discussion 53 1.3.2a Ionic cyclization approach 57 1.3.2b Radical approach for -
31295017090514.Pdf (4.422Mb)
LATENT FINGERPRINT AND TRACE EXPLOSIVES DETECTION BY PHOTOLUMINESCENCE AND TIME-RESOLVED IMAGING by KIMBERLY KAY BOULDIN, B.S., M.S. A DISSERTATION IN PHYSICS Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Chairperson of the Committee Accepted Dean of the Graduate School May, 2003 ACKNOWLEDGEMENTS I would like to thank my research advisor. Dr. Roland Menzel, and all of my committee members: Dr. Wallace Glab, Dr. Kelvin Cheng, and Dr. Edward Quitevis, for all of their guidance and support over the last several years. I want to thank Dr. Cheng for the phase-based lifetime measurements and the Graduate School at Texas Tech University for financial support in the summer of 1999. I would also like to thank Mr. Russell Murdock for his never-ending help and fiiendship. A special word of gratitude is extended to Menzel, Wally, RusselL, and the physics shop crew for all of the wisdom that was delivered over years of "technical discussions." I also thank my parents, Ted and Judy Bouldin, for all the love and encouragement they showered on me through my life. Mom and Dad, thank you both for encoiuraging me to set my goals high and teaching me to persevere until those goals were met. Finally, I would like to express how gratefiil I am to all of my family (with a special thanks to Finnan McClellan for his help with the figures), fiiends, and educators, both past and present. Without all of you, I would not be where I am today. -
Studies on Lanthanide Shift Reagents A
1 STUDIES ON LANTHANIDE SHIFT REAGENTS A thesis submitted for THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON by George C. de VILLARDI de MONTLAUR Department of Chemistry Imperial College of Science and Technology London 1976 2 ABSTRACT Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. III Shift reagents for olefins are reported : Ln (fod)3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver l-heptafluorobutyrate is used to com- plex the olefin. The preparation, properties and efficiency of such systems are described and various other transition metal-olefin complexes are investigated. Configurational aspects and exchange processes of III Ln (fod) complexes with secondary and tertiary monoamines 3 are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand ex- change are discussed. At low temperature, ring inversion can be slow on an III nmr time-scale for Ln (fod) -diamino chelates. Barriers 3 to ring inversion in substituted wthylenediamines and propane- diamines are obtained. Steric factors appear to play an im- portant role in the stability and kinetics of these bidentate species. 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. D. F. Evans for his constant help and long discussions during the course of this work. I would like to thank Professor G. Wilkinson for all the advice he gave me. My thanks are also due to the whole laboratory who contributed to render my stay in London extremely pleasant, to the Royal Society and C.N.R.S.