Fermi's Paradox
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling Panspermia in the TRAPPIST-1 System
October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century. -
Defenses That Hurt Science ______By Avi Loeb on June 4, 2021
Defenses That Hurt Science _______ By Avi Loeb on June 4, 2021 In the highlighted subtitle of a recent New-York Times Op-Ed, Bret Stephens stated: "Sometimes science is hurt most by those who think they are defending it". This sentiment resonates with many examples that go beyond the topic of his Op-Ed. Let me elaborate. When the nitrogen iceberg model was proposed recently to explain the weird properties of the first interstellar object `Oumuamua, it was immediately embraced by mainstream astronomers with a sigh of relief that the anomalous object was finally explained. We had never seen a chunk of frozen nitrogen floating within the Solar system before, and being detected first - `Oumuamua should represent the most common type of objects ejected by other planetary systems; but this was of little concern for the advocates. Shortly afterwards, my student Amir Siraj and I posted a paper showing that this model requires much more raw material of heavy elements than available in stars within the Milky Way galaxy. This was not a reflection on the previously noted abundance problem for interstellar objects, but a specific deficiency of the nitrogen model - which associates `Oumuamua with a fragment chipped off the surface of a Pluto-like planet around another star. The limited supply of nitrogen on exo-Pluto surfaces and the requirement that the interstellar journey would last just half a billion years - or else most of the nitrogen would evaporate, leads to a mass budget problem. But why should the mainstream worry about a fundamental drawback when the agenda is to sideline the weirdness of `Oumuamua? In another recent Op-Ed, Seth Shostak from the SETI Institute downgraded the scientific credentials of the anticipated report on Unidentified Flying Objects (UFOs), to be delivered by the Pentagon and various intelligence agencies to Congress this month. -
Lecture-29 (PDF)
Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. -
Cometary Panspermia a Radical Theory of Life’S Cosmic Origin and Evolution …And Over 450 Articles, ~ 60 in Nature
35 books: Cosmic origins of life 1976-2020 Physical Sciences︱ Chandra Wickramasinghe Cometary panspermia A radical theory of life’s cosmic origin and evolution …And over 450 articles, ~ 60 in Nature he combined efforts of generations supporting panspermia continues to Prof Wickramasinghe argues that the seeds of all life (bacteria and viruses) Panspermia has been around may have arrived on Earth from space, and may indeed still be raining down some 100 years since the term of experts in multiple fields, accumulate (Wickramasinghe et al., 2018, to affect life on Earth today, a concept known as cometary panspermia. ‘primordial soup’, referring to Tincluding evolutionary biology, 2019; Steele et al., 2018). the primitive ocean of organic paleontology and geology, have painted material not-yet-assembled a fairly good, if far-from-complete, picture COMETARY PANSPERMIA – cultural conceptions of life dating back galactic wanderers are normal features have argued that these could not into living organisms, was first of how the first life on Earth progressed A SOLUTION? to the ideas of Aristotle, and that this of the cosmos. Comets are known to have been lofted from the Earth to a coined. The question of how from simple organisms to what we can The word ‘panspermia’ comes from the may be the source of some of the have significant water content as well height of 400km by any known process. life’s molecular building blocks see today. However, there is a crucial ancient Greek roots ‘sperma’ meaning more hostile resistance the idea of as organics, and their cores, kept warm Bacteria have also been found high in spontaneously assembled gap in mainstream understanding - seed, and ‘pan’, meaning all. -
Fred Hoyle: Pioneer in Nuclear Astrophysics
PERSONALITY Fred Hoyle: pioneer in nuclear astrophysics Fred Hoyle, who died in 2001, is best known as a cosmologist. But, as Simon Mitton relates, his career in physics began with the weak interaction and moved on to a crucial discovery in nuclear physics. Fred Hoyle, the great cosmologist, nuclear astrophysicist and contro versialist, was born 90 years ago in the beautiful county of Yorkshire in the north of England. Hoyle's first science teacher was his father, who supplied the boy with books and apparatus for chemistry exper iments. By the age of 15 he was making highly toxic phosphine (PH3) Later in life Hoyle seldom worked at a desk in a faculty building, in his mother's kitchen, and terrifying his young sister with explosions. preferring a comfortable armchair at home. (St John's College.) In high school he excelled in mathematics, chemistry and physics, and in 1933 won a place at Cambridge to study physics. time Hoyle tracked him down he had just returned from spending six On arrival at Cambridge he immediately demonstrated his fierce months in Rome with Enrico Fermi. Peierls immediately set Hoyle independence by telling his astonished tutor that he was switching the task of improving Fermi's theory of beta decay, published in from physics to applied mathematics. The future nuclear astro 1934. This led, in 1937, to Hoyle's first research paper, "The gen physicist foresaw that Cambridge mathematics rather than lab eralised Fermi interaction". oratory physics would give him the right start as a theorist. The In 1938 Paul Dirac, who had won the Nobel prize in 1933, country boy displayed an astonishing talent at mathematics, even became Hoyle's supervisor because Peierls had left Cambridge for by the highest standards of the university. -
A Direct Communication Proposal to Test the Zoo Hypothesis
Space Policy 38 (2016) 22e26 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Viewpoint A direct communication proposal to test the Zoo Hypothesis Joao~ Pedro de Magalhaes~ Institute of Integrative Biology, University of Liverpool, Biosciences Building, Room 245, Crown Street, Liverpool, L69 7ZB, UK article info abstract Article history: Whether we are alone in the universe is one of the greatest mysteries facing humankind. Given the >100 Received 3 March 2016 billion stars in our galaxy, many have argued that it is statistically unlikely that life, including intelligent Accepted 16 June 2016 life, has not emerged anywhere else. The lack of any sign of extraterrestrial intelligence, even though on a Available online 26 July 2016 cosmic timescale extraterrestrial civilizations would have enough time to cross the galaxy, is known as Fermi's Paradox. One possible explanation for Fermi's Paradox is the Zoo Hypothesis which states that Keywords: one or more extraterrestrial civilizations know of our existence and can reach us, but have chosen not to Active SETI disturb us or even make their existence known to us. I propose here a proactive test of the Zoo Hy- Astrobiology fi Fermi's Paradox pothesis. Speci cally, I propose to send a message using television and radio channels to any extrater- Messaging to extraterrestrial intelligence restrial civilization(s) that might be listening and inviting them to respond. Even though I accept this is METI unlikely to be successful in the sense of resulting in a response from extraterrestrial intelligences, the possibility that extraterrestrial civilizations are monitoring us cannot be dismissed and my proposal is consistent with current scientific knowledge. -
Vol 10 No 1, Winter 2004
SearchLites Vol. 10 No. 1, Winter 2004 The Quarterly Newsletter of The SETI League, Inc. Offices: 433 Liberty Street The Date Equation PO Box 555 by David Grinspoon Little Ferry NJ 07643 USA Editor's Note: This delightful analogy on the Drake Equation is excerpted from Dr. Grinspoon's new book Lonely Planets, ISBN 0-06-018540-6, © 2003, Harper Collins Publishers, New York. Phone: (201) 641-1770 Facsimile: Say you are a single person going to a large dance party, and you would like to come away with a (201) 641-1771 date for the following weekend. Arriving in front of the house, you can hear the music pumping Email: and feel the bass rattling your gut. You are excited, but nervous as hell, so you decide to calm [email protected] yourself with some math. Before going inside, you try to calculate your chances of getting lucky. Web: You start by guessing the total number of people at the party. You notice that people are arriving www.setileague.org at a rate of three per minute. We'll call this rate of arrival R. People are leaving at roughly the President: same rate, but you realize that you can estimate the number of people inside if you know how long Richard Factor they are staying. Let's call this length of stay L. The number of people inside will be roughly R Registered Agent: times L. So, if people on average are staying for, say, one hundred minutes, there will be about Marc Arnold, Esq. three hundred inside. -
October 2003 SOCIETY
ISSN 0739-4934 NEWSLETTER HISTORY OF SCIENCE VOLUME 32 NUMBER 4 October 2003 SOCIETY those with no interest in botany, the simple beauty of the glass is enough. Natural History Delights in Cambridge From modern-life in glass to long-ago life, it’s only a short walk. The museum houses ant to discuss dinosaurs, explore microfossils of some of the Earth’s earliest life Wancient civilizations, learn wild- forms, as well as fossil fish and dinosaurs – flower gardening, or study endangered such as the second ever described Triceratops, species? If variety is the spice of life, then and the world’s only mounted Kronosaurus, a the twenty-one million specimens at the 42-foot-long prehistoric marine reptile. Harvard Museum of Natural History show a Among its 90,000 zoological specimens the museum bursting with life, much of it unnat- museum also has the pheasants once owned urally natural. by George Washington. And many of the The museum will be the site of the opening mammal collections were put together in the reception for the 2003 HSS annual meeting. 19th century by “lions” in the history of sci- The reception begins at 7 p.m. Thursday, 20 ence, like Louis Agassiz. November, and tickets will be available at the Much of the museum’s collection of rocks and meeting registration desk. Buses will run from ores is the result of field work, but the museum the host hotel to the museum. houses not only that which has been dug up, but The Harvard MNH is an ideal spot for his- also that which has fallen out of the sky. -
Dr. Seth Shostak
Written Text for Congressional Testimony Advances in the Search for Life Seth Shostak, Senior Astronomer, SETI Institute 189 Bernardo Ave., #200, Mountain View, CA 94043, [email protected] It is no longer considered foolish to argue that biology could exist on some of the trillion other planets in our galaxy. Its discovery would produce a lasting change in our perceptions, demonstrating that life is not confined to our world. We would know that biology is not some sort of miracle, but a commonplace – an ubiquitous, cosmic infection. The discovery of intelligence elsewhere would be of even greater import, as we have always considered humans to be special, even the pinnacle of Creation. To learn that there are others out there – others whose cognitive abilities exceed our own – would be a discovery that would recalibrate how our species views itself. It would also have consequences that can be only vaguely gauged, in much the way that the discovery of the New World led to societal changes that were largely unpredictable at the time of its happening. However, the search for extraterrestrial intelligence, known by the acronym SETI, has been pursued for more than a half century with no unambiguous, positive result. We haven’t found conclusive proof of any intelligent (or even unintelligent) life beyond the confines of Earth. Claims that our planet is being visited by alien beings, while popular with the citizenry, are not considered credible by most scientists. However, recent developments in both astronomy and technology are accelerating the speed of SETI searches, and it is hardly fantastic to suggest that we could find evidence of cosmic company within a few decades. -
Searching for Extraterrestrial Intelligence
THE FRONTIERS COLLEctION THE FRONTIERS COLLEctION Series Editors: A.C. Elitzur L. Mersini-Houghton M. Schlosshauer M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely The Biological Evolution of Religious Mind and Behaviour Edited by E. Voland and W. Schiefenhövel Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-To-Classical Transition By M. Schlosshauer The Nonlinear Universe Chaos, Emergence, Life By A. Scott Symmetry Rules How Science and Nature are Founded on Symmetry By J. Rosen Quantum Superposition Counterintuitive Consequences of Coherence, Entanglement, and Interference By M.P. -
Exploring Biogenic Dispersion Inside Star Clusters with System Dynamics Modeling
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2020 doi:10.20944/preprints202010.0232.v1 Exploring Biogenic Dispersion Inside Star Clusters with System Dynamics Modeling Authors Javier D. Burgos. Corporación para la Investigacion e Innovación -CIINAS. Contact: [email protected] Diana C. Sierra. Corporación para la Investigacion e Innovación -CIINAS; Bogotá, Colombia. Contact: [email protected] Abstract The discovery of a growing number of exoplanets and even extrasolar systems supports the scientific consensus that it is possible to find other signs of life in the universe. The present work proposes for the first time, an explicit mechanism inspired by the dynamics of biological dispersion, widely used in ecology and epidemiology, to study the dispersion of biogenic units, interpreted as complex organic molecules, between rocky or water exoplanets (habitats) located inside star clusters. The 3 results of the dynamic simulation suggest that for clusters with populations lower than 4 M/ly it is not possible to obtain biogenic worlds after 5 Gyr. Above this population size, biogenic dispersion seems to follow a power law, the larger the density of worlds lesser will be the impact rate (훽.) value to obtain at least one viable biogenic Carrier habitat after 5 Gyr. Finally, when we investigate scenarios by varying β, a well-defined set of density intervals can be defined in accordance to its characteristic β value, suggesting that biogenic dispersion has a behavior of “minimal infective dose” of “minimal biogenic effective” events by interval i.e. once this dose has been achieved, doesn’t matter if additional biogenic impact events occur on the habitat. -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.