Water Footprints and Virtual Water Flows Embodied in the Power Supply Chain

Total Page:16

File Type:pdf, Size:1020Kb

Water Footprints and Virtual Water Flows Embodied in the Power Supply Chain water Review Water Footprints and Virtual Water Flows Embodied in the Power Supply Chain Like Wang 1, Yee Van Fan 1, Petar Sabev Varbanov 1,* , Sharifah Rafidah Wan Alwi 2 and Jiˇrí Jaromír Klemeš 1 1 Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic; [email protected] (L.W.); [email protected] (Y.V.F.); [email protected] (J.J.K.) 2 Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), UTM Johor Bahru 81310, Johor, Malaysia; [email protected] * Correspondence: [email protected] Received: 10 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Water use within power supply chains has been frequently investigated. A unified framework to quantify the water use of power supply chains deserves more development. This article provides an overview of the water footprint and virtual water incorporated into power supply chains. A water-use mapping model of the power supply chain is proposed in order to map the analysed research works according to the considered aspects. The distribution of water footprint per power generation technology per region is illustrated, in which Asia is characterised by the largest variation of the water footprint in hydro-, solar, and wind power. A broader consensus on the system boundary for the water footprint evaluation is needed. The review also concludes that the water footprint of power estimated by a top-down approach is usually higher and more accurate. A consistent virtual water accounting framework for power supply chains is still lacking. Water scarcity risks could increase through domestic and global power trade. This review provides policymakers with insights on integrating water and energy resources in order to achieve sustainable development for power supply chains. For future work, it is essential to identify the responsibilities of both the supply and demand sides to alleviate the water stress. Keywords: power-water nexus; water footprint; virtual water; power supply chain; power trade 1. Introduction Water and energy security have become two major challenges in the world due to the growing gap between demand and supply [1], with constantly emerging new water pollution threats [2] that have to be minimised and prevented. Water use for power production is reported to contribute 25% (51.9 km3) of the total global water consumption in energy production, of which 75% is contributed by fuel production [3]. It is reported that up to 93% of the water for energy production is contributed by the power supply in some Eastern countries [4]. In 2050, the total power generation is estimated to be double that in 2020 (see Figure1a), while the share of energy sources is projected to be dominated by renewables in 2050 [5]. Figure1b shows the world power demand for 2020 and the projection for 2050 broken down by regions, whose overall trend is in line with the projection of the power supply. It is essential to understand the water use of the power supply chain to ensure water sustainability in terms of availability, minimising ecosystem pollution and maximising power supply security. Water 2020, 12, 3006; doi:10.3390/w12113006 www.mdpi.com/journal/water Water 2020, 12, 3006 2 of 21 Water 2020, 12, x FOR PEER REVIEW 2 of 21 Figure 1. 1. GlobalGlobal power power supply supply and demand. and demand. (a) Global power (a) Global generation power from generation 2000–2050; from(b) Comparison 2000–2050; (ofb )power Comparison demand ofin different power demand regions worldwide in different in regions2020 and worldwide 2050. (Data insource: 2020 The and International 2050. (Data Energy source: TheAgency International during the Energy period Agency2000–2017) during [6]; the the predicted period 2000–2017) data from [2020–20506]; the predicted [7]. data from 2020–2050 [7]. The water footprint [8] [8] is is a a well-established metric metric,, defined defined as as the the volume volume of of consumed consumed or or polluted polluted freshwaterfreshwater required to produce a a certain amount amount of of goods goods or or services services [9]. [9]. The The water water footprint footprint includes includes greengreen water, referring referring to to the the rainwater rainwater stored stored in insoil soils,s, blue blue water water (freshwater (freshwater from fromrivers rivers and wells and and wells andgreywater), greywater), and andgreywater greywater (polluted (polluted water) water) as has as be hasen beenoverviewed overviewed [10]. [It10 has]. It been has beenwidely widely used usedto toquantify quantify water water use useat various at various scales scales [11] using [11] usingthe Life the Cycle Life Assessment Cycle Assessment (LCA), and (LCA), it has and been it detailed has been detailedfurther [12]. further This [concept12]. This has concept been extended has been to extended be more general to be more so as general to describe so as embodied to describe water embodied when compared to the original definition of virtual water [13]. Virtual water is proposed as a concept to measure water when compared to the original definition of virtual water [13]. Virtual water is proposed as a the (direct and indirect) embodied water of products or services in international trade [14]. Recently, virtual concept to measure the (direct and indirect) embodied water of products or services in international water has been widely applied to analyse the water resources used in the food trade [15]. trade [14]. Recently, virtual water has been widely applied to analyse the water resources used in the The impact of the power supply chain on water sources has been assessed in terms of power supply, foodtrade, trade and demand. [15]. The scope of study on the power supply side mainly focuses on assessing the water footprintThe impactfor various of the fuel power types supply[16], different chain oncooling water technologies sources has (open-, been assessed closed-, hybrid, in terms and of powerdry cooling) supply, trade,[16], low-carbon and demand. technologies The scope of(solar, study wind, on the powerand carbon supply emissions side mainly captur focusese technology) on assessing [17], the waterand footprintenvironmental for various issues (climate fuel types change, [16], water different scarcity cooling, pollution) technologies contributed (open-, by closed-,the power hybrid, supply and chain dry cooling)[18]. Power [16 ],supply low-carbon and demand technologies are typically (solar, spatia wind,lly andnonuniform carbon emissions[19], which captureinduces technology)regional power [17 ], andtrade, environmental and regional differences issues (climate in power change, supply water and scarcity, water resources pollution) are contributed reallocated. byFigure the power2 shows supply the chainpower [ 18generation]. Power and supply net trade, and demandas well as are the typically global distribution spatially nonuniformof water scarcity [19 ],over which the world’s induces regions, regional powerfor the trade,year 2017. and The regional Water diStressfferences Index in (WSI) power ranges supply widely and from water 0.98 resources (Egypt) to are 0.1 reallocated. (Canada). The Figure total 2 showspower thegeneration power generationof the listed and coun nettries trade, (24 ascountries well as in the Figure global 2) distribution accounts for of over water 80% scarcity of the overglobal the amount. The top three power generation countries in 2017, China (6.2 PWh), the United States (4.0 PWh), world’s regions, for the year 2017. The Water Stress Index (WSI) ranges widely from 0.98 (Egypt) to and India (1.2 PWh), face a conflict between water resources and electricity generation, with the WSI being 0.1 (Canada). The total power generation of the listed countries (24 countries in Figure2) accounts for as high as 0.48, 0.50, and 0.97. The question of how to assess and evaluate the power trade effect on water over 80% of the global amount. The top three power generation countries in 2017, China (6.2 PWh), resource relocation becomes an issue. This is of increasing concern to virtual water resource transfers in thecross-regional United States power (4.0 trade. PWh), This and is India motivated (1.2 PWh), by the facesignificant a conflict footprints between that water stem resources from satisfying and electricity power generation,demands via withboth local the WSI generation being asand high regional as 0.48, power 0.50, trade and flows. 0.97. The question of how to assess and evaluateA network the power of transferring trade effect virtual on water water resource resource relocations was assessed becomes based an on issue. the inter-regional This is of increasing power concerntrade [20], to and virtual the spatial water resourcevirtual water transfers transfers in cross-regionalwere analysed. powerWater scarcity trade. Thishas been is motivated highlighted by as the significantanother essential footprints indicator that stemfor characterising from satisfying the regi poweronal demands water consumption via both local and generationavailability and[21], regionaland it powerallows for trade a better flows. understanding of what is causing water scarcity and which regions are suffering from it [22]. ATo network understand of transferring and compare virtual the spatial water distributi resourceson was of water assessed use based
Recommended publications
  • Coping with Water Scarcity: What Role for Biotechnologies?
    ISSN 1729-0554 LAND AND WATER DISCUSSION 7 PAPER LAND AND WATER DISCUSSION PAPER 7 Coping with water scarcity: What role for biotechnologies? As one of its initiatives to mark World Water Day 2007, whose theme was "Coping with water scarcity", FAO organized a moderated e-mail conference entitled "Coping with water scarcity in developing countries: What role for agricultural biotechnologies?". Its main focus was on the use of biotechnologies to increase the efficiency of water use in agriculture, while a secondary focus was on two specific water-related applications of micro-organisms, in wastewater treatment and in inoculation of crops and forest trees with mycorrhizal fungi. This publication brings together the background paper and the summary report from the e-mail conference. Coping with water scarcity: What role for biotechnologies? ISBN 978-92-5-106150-3 ISSN 1729-0554 9 7 8 9 2 5 1 0 6 1 5 0 3 TC/M/I0487E/1/11.08/2000 LAND AND WATER Coping with Water DISCUSSION PAPER Scarcity: What Role for 7 Biotechnologies? By John Ruane FAO Working Group on Biotechnology Rome, Italy Andrea Sonnino FAO Research and Extension Division Rome, Italy Pasquale Steduto FAO Land and Water Division Rome, Italy and Christine Deane Faculty of Law University of Technology, Sydney Australia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The views expressed in this publication are those of the authors and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • UK Water Footprint: the Impact of the UK’S Food and Fibre Consumption on Global Water Resources Volume Two: Appendices
    UK Water Footprint: the impact of the UK’s food and fibre consumption on global water resources Volume two: appendices Ashok Chapagain Stuart Orr Contents Volume two: appendices a. acronyms and abbreviations 3 b. methods 4 c. data sources 13 d. virtual water flows to the uk by product 14 e. water footprint of the uk by product category 28 f. the water footprint of nations (2000-04) 31 2 Appendix A: Acronyms and Abbreviations BOD Biological Oxygen Demand COD Chemical Oxygen Demand DEFRA Department for Environment, Food and Rural Affairs DFID Department for International Development EF Ecological Footprint FAO Food and Agriculture Organization Gm3 Billion cubic meters GNI Gross National Income ITC International Trade centre Mm3 Million cubic meters NGO Non-Governmental organisation PC-TAS Personal Computer Trade Analysis System of the ITC UNESCO-WWAP UNESCO- World Water Assessment Programme UNESCO United Nations Educational, Scientific and Cultural Organization VWC Virtual water content WF Water Footprint WFD Water Framework Directive WWF World Wildlife Fund 3 Appendix B: Methods The WF is the cumulative amount of water consumed directly (drinking and service water use) or indirectly (water used to produce goods consumed). The indirect water use is quantified at the locations where production takes place, not at locations where products are consumed. Before quantifying the WF of a product, we need to analyse the virtual water content of that product which distinguishes the kind of water used in the production process. Virtual water content of a primary crop A major part of the following section is drawn upon the methodology presented in Chapagain 3 and Orr (2008).The virtual water content of a primary crop VWCc (m /t) is calculated as the ratio 3 of the volume of water used for crop production WUc (m /ha), to the volume of crop produced, Yc (t/ha).
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • Four Billion People Affected by Severe Water Scarcity
    Briefing paper Four billion people affected by severe water scarcity Number of people living in water scarce areas Research published in Science Advances on water scarcity by Prof. Hoekstra and Dr. Mesfin Mekonnen, researchers from University of Twente, reveals that as many as four billion people worldwide live under water scarcity for at least one month of the year. Their research shows that the earlier estimates did not capture the monthly variability of water scarcity and that the number of people affected by severe water scarcity are much higher. For example, the entire population of 37 countries and more than half of the population of 97 countries live under severe water scarcity during at least one month per year (Figure 1). This information is key in addressing Sustainable Development Goal 6.4 which aims to substantially reduce the number of people suffering from water scarcity. Blue water scarcity is a result of the cumulative impact of the blue water footprint of agriculture, domestic water supply and industry. In areas where blue water scarcity is greater than 1 – moderate, significant and severe water scarcity – environmental flow requirements are not met, which can lead to degradation of natural ecosystems, loss of valuable ecosystem services and negative impacts on subsistence uses, such as access to drinking and other household water and loss of local fisheries. Figure 1: Percentage of population experiencing severe water scarcity at least one month of a year. Source: Water Footprint Network Data from M.M. Mekonnen & A.Y. Hoekstra, University of Twente Trade risk and water scarcity As nations work toward securing food, water, energy and other essential inputs for people’s well being, livelihoods and the country’s economic development, most countries rely on imports as well as exports of goods and services.
    [Show full text]
  • Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: from Conventional to Emerging Technologies
    environments Article Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies Andi Mehmeti 1,* ID , Athanasios Angelis-Dimakis 2 ID , George Arampatzis 3 ID , Stephen J. McPhail 4 and Sergio Ulgiati 5 1 Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy 2 School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; [email protected] 3 School of Production Engineering and Management, Technical University of Crete, 731 00 Chania, Greece; [email protected] 4 DTE-PCU-SPCT, ENEA C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy; [email protected] 5 Department of Science and Technology, Parthenope University of Naples, 80134 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-327-556-3659 Received: 26 December 2017; Accepted: 2 February 2018; Published: 6 February 2018 Abstract: A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016.
    [Show full text]
  • Freshwater Resources
    3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ...........................................................................................................................................................
    [Show full text]
  • Linking Environment and Conflict Prevention the Role of the United Nations
    FULL REPORT LINKING ENVIRONMENT AND CONFLICT PREVENTION THE ROLE OF THE UNITED NATIONS CSS peace ETH Zurich © CSS and swisspeace 2008 Center for Security Studies (CSS) ETH Zurich Seilergraben 45-49 - SEI CH – 8092 Zürich Tel.: +41-44-632 40 25 Fax: +41-44-632 19 41 [email protected] www.css.ethz.ch swisspeace Sonnenbergstrasse 17 P.O. Box CH - 3000 Bern 7 Tel.: +41-31-330 12 12 Fax: +41-31-330 12 13 [email protected] www.swisspeace.ch A report by Simon A. Mason, Adrian Muller Center for Security Studies (CSS), ETH Zürich Albrecht Schnabel, Rina Alluri, Christian Schmid swisspeace, Bern Supervised by Andreas Wenger (CSS), Victor Mauer (CSS), and Laurent Goetschel (swisspeace) This is the full report, which can be accessed at <www.css.ethz.ch> and <www.swisspeace.ch> as well as in the “CSS Environment and Conflict Transformation” Series (www.isn.ethz.ch > “Publishing House” > “Publication Series”). An 18-page summary of this full report can be accessed at the same websites. Cover photo Paul Klee, Rosenwind 1922,39 Ölfarbe auf Grundierung auf Papier auf Karton 38,2 x 41,8 cm Zentrum Paul Klee, Bern, Schenkung Livia Klee Contents Foreword..................................................................................................................................... 4 Acronyms and Abbreviations ....................................................................................................... 5 List of Figures and Tables...........................................................................................................
    [Show full text]
  • Water Footprint and Virtual Water Trade: the Birth and Growth of a New Research Field in Spain
    water Article Water Footprint and Virtual Water Trade: The Birth and Growth of a New Research Field in Spain Maite M. Aldaya 1,* , Alberto Garrido 2,3 and Ramón Llamas 3,4 1 Institute for Innovation & Sustainable Development in the Food Chain (IS-FOOD), Public University of Navarra (UPNA), Jerónimo de Ayanz Centre, Arrosadia Campus, 31006 Pamplona, Spain 2 Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Complutense Avenue, 28040 Madrid, Spain; [email protected] 3 Water Observatory, Botín Foundation, Castelló 18C, 28001 Madrid, Spain; [email protected] 4 Royal Academy of Sciences of Spain, Valverde 22, 28004 Madrid, Spain * Correspondence: [email protected] Received: 31 August 2020; Accepted: 14 September 2020; Published: 21 September 2020 Abstract: The growth in the number of studies applying and expanding the concepts of the water footprint and virtual water trade in Spain has generated a wealth of lessons and reflections about the scarcity, allocation, productive use, and management of water from the viewpoint of a semi-arid country. This paper reviews the evolution of this research field in Spain since its introduction in 2005 and reflects on its main contributions and issues of debate. It shows how these concepts can be useful tools for integrated water accounting and raising awareness, when used with certain precautions: (1) Supply-chain thinking, taking into account value chains and the implications of trade, generally ignored in water management, can help to address water scarcity issues and sustainable water use. (2) Green water accounting incorporates land use and soil management, which greatly influences hydrological functioning.
    [Show full text]
  • Water Theft in Rural Contexts Abstract
    Water theft in rural contexts Rob White Distinguished Professor of Criminology School of Social Sciences University of Tasmania AUSTRALIA Contact author – Rob White: [email protected]; +61 3 6226 2877 Abstract Water theft is a phenomenon that is set to grow in the light of climate change, chronic drought, freshwater scarcity, and conflicts over natural resources. Drawing upon recent developments pertaining to poor regulation and the stealing of water from the Murray- Darling river system in Australia, this paper explores the cultural and political economic dimensions of water theft in the context of rurality and criminality. Framed within the overarching perspective of green criminology, the article examines water theft through the lens of rural folk crime as well as failures of regulation and environmental law enforcement. It raises issues relating to the social construction of victims of water theft, human (such as Indigenous people) and non-human (such as ecosystems). This article argues that the geographical location of water theft is integral to the dynamics of the harms committed, and the response of both governments and residents to the crime. Key words: water theft; green criminology; rural folk crime; Murray-Darling river; environmental regulation © 2019 White. This article is published under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) Water theft in rural contexts – White Introduction In July 2017, an Australian Broadcasting Corporation Four Corners investigation revealed a series of improper conducts pertaining to the Murray-Darling Basin, the largest fresh-water system in Australia (ABC, 2017). Four Corners is a long-running investigative current affairs television program produced by the national public broadcaster (the ABC).
    [Show full text]
  • Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas
    Animal and Veterinary Sciences 2018; 6(4): 58-66 http://www.sciencepublishinggroup.com/j/avs doi: 10.11648/j.avs.20180604.12 ISSN: 2328-5842 (Print); ISSN: 2328-5850 (Online) Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas Ke Zhang 1, †, Chao Li 1, †, Wen Bao 1, Mengmeng Guo 1, Qi Zhang 1, Yuxin Yang 1, Qifang Kou 2, Wenrui Gao 3, Xiaolong Wang 1, Zhaoxia Yang 1, *, Yulin Chen 1, * 1College of Animal Science and Technology, Northwest A&F University, Yangling, China 2Ningxia Tan Sheep Farm, Hongsibu, China 3Shanbei Cashmere Goats Farm, Hengshan, China Email address: *Corresponding author †Ke Zhang and Chao Li are co-first authors. To cite this article: Ke Zhang, Chao Li, Wen Bao, Mengmeng Guo, Qi Zhang, Yuxin Yang, Qifang Kou, Wenrui Gao, Xiaolong Wang, Zhaoxia Yang, Yulin Chen. Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas. Animal and Veterinary Sciences . Vol. 6, No. 4, 2018, pp. 58-66. doi: 10.11648/j.avs.20180604.12 Received : August 13, 2018; Accepted : August 29, 2018; Published : October 13, 2018 Abstract: The increased consumption of livestock products is likely to put further pressure on the world’s freshwater resources, an agricultural virtual water strategy will alleviate the water resources pressure of livestock husbandry, especially in arid areas. The research on the virtual water requirement of living animals is still blank in China. Most of the researches on the virtual water of animal products in China adopt foreign data and there is some error with the actual situation in China.
    [Show full text]
  • Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity
    www.water-alternatives.org Volume 8 | Issue 3 Wichelns, D. 2015. Virtual water and water footprints: Overreaching into the discourse on sustainability, efficiency, and equity. Water Alternatives 8(3): 396-414 Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity Dennis Wichelns Bloomington, Indiana, USA; [email protected] ABSTRACT: The notions of virtual water and water footprints were introduced originally to bring attention to the large amounts of water required to produce crops and livestock. Recently, several authors have begun applying those notions in efforts to describe efficiency, equity, and the sustainability of resources and production activities. In this paper, I describe why the notions of virtual water and water footprints are not appropriate for analysing issues pertaining to those topics. Both notions lack a supporting conceptual framework and they contain too little information to enhance understanding of important policy issues. Neither notion accounts for the opportunity cost or scarcity value of water in any setting, or the impacts of water availability and use on livelihoods. In addition, countries trade in goods and services – not in crop and livestock water requirements. Thus, the notions of virtual water and water footprints cannot provide helpful insight regarding the sustainability of water use, economic efficiency, or social equity. Gaining such insight requires the application of legitimate conceptual frameworks, representing a broad range of perspectives from the physical and social sciences, with due consideration of dynamics, uncertainty, and the impacts of policy choices on livelihoods and natural resources. KEYWORDS: Agriculture, economics, food security, livelihoods, risk, trade, uncertainty INTRODUCTION The notion of virtual water was first presented as an interesting description of how arid countries satisfy their annual food demands by importing substantial amounts of grain and other products (Allan, 1996, 2002).
    [Show full text]
  • The Water Footprints of Rice Consumption
    A.K. Chapagain The green, blue and grey A.Y. Hoekstra water footprint of rice March 2010 from both a production and consumption perspective Value of Water Research Report Series No. 40 THE GREEN, BLUE AND GREY WATER FOOTPRINT OF RICE FROM BOTH A PRODUCTION AND CONSUMPTION PERSPECTIVE 1 A.K. CHAPAGAIN 2 A.Y. HOEKSTRA MARCH 2010 VALUE OF WATER RESEARCH REPORT SERIES NO. 40 1 WWF-UK, Godalming, United Kingdom, email: [email protected] 2 University of Twente, Enschede, Netherlands, email: [email protected] The Value of Water Research Report Series is published by UNESCO-IHE Institute for Water Education, Delft, the Netherlands in collaboration with University of Twente, Enschede, the Netherlands, and Delft University of Technology, Delft, the Netherlands Contents Summary.................................................................................................................................................................5 1. Introduction ........................................................................................................................................................7 2. Method and data .................................................................................................................................................9 3. Water footprint of rice production....................................................................................................................19 4. International virtual water flows related to rice trade.......................................................................................23
    [Show full text]