SCIENTIFIC METHOD Howard Sankey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
@)"'*"'O' See Fiont Matter 0039-3681/00$
Stud.Hist. Phil. Sci.,Vol. 31, No. I, pp. l5l-112,20o0 @ 20fi) Elsevier ScienceLtd. All rights reserved Printed in Great Britain @)"'*"'o' see fiont matter www.elswier.com/locate/shpsa 0039-3681/00$ - Rudolf Carnap's oTheoreticalConcepts in Sciencet Stathis Psillos* 1. Editor's Introduction Rudolf Camapdelivered the hitherto unpublishedlecture 'TheoreticalConcepts in Science' at the meeting of the American Philosophical Association, Pacific Division, at SantaBarbarg Califomia, on 29 December1959. It was part of a symposiumon 'Camap'sviews on TheoreticalConcepts in Science'.In the bibli- ographythat appearsin the end of the volume, 'The Philosophyof Rudolf Camap', edited by Faul Arthur Schilpp, a revised version of this addressappears to be amongCamap's forthcoming papers.But although Camap startedto revise it, he never finisfusdthe revision,r and never publishedthe unrevisedtranscript. Perhaps this is becausevariants of the approachto theoreticalconcepts presented for the first time in the SantaBarbara lecture have appearedin other papersof his (cf. the editorial footnotesin Carnap'slecture). Still, I thinlq the SantaBarbara address is a little philosophical gem that needsto see the light of day. The documentthat follows is the unrevisedtanscript of Carnap's lecture.2lts style, then, is tbat of an oral presentation.I decidedto leave it as it is, making only very minor stylistic chonges-which, exceptthose related to punctuation,are indicatedby curly brack- ets.3I think that reading this lecture is a rewarding experience,punctuated as the lechne is with odd remarksand autobiographicalpoints. One can alnost envisage I Department of Philosophy and History of Science, University of Athens, Athens, Greece Received 28 Apil 1998; in revkedform I September 1998. -
Conversations with Alan Musgrave
Rationality and Reality STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE VOLUME 20 General Editor: S. GAUKROGER, University of Sydney Editorial Advisory Board: RACHEL ANKENY, University of Sydney STEVEN FRENCH, University of Leeds DAVID PAPINEAU, King’ s College London NICHOLAS RASMUSSEN, University of New South Wales JOHN SCHUSTER, University of New South Wales RICHARD YEO, Griffith University RATIONALITY AND REALITY Conversations with Alan Musgrave Edited by COLIN CHEYNE University of Otago, DDunedin, New Zealand and JOHN WORRALL London School of Economics, London, UK A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4206-X (HB) ISBN-13 978-1-4020-4206-X (HB) ISBN-10 1-4020-4207-8 (e-book) ISBN-13 978-1-4020-4207-8 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Cover: Photograph of Alan Musgrave used with kind permission of Gudrun Perin, Guelph, Canada Printed on acid-free paper All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. TABLE OF CONTENTS Acknowledgements vii Notes on Contributors ix COLIN CHEYNE / Introduction 1 GREGORY CURRIE / Where Does the Burden of Theory Lie? 7 COLIN CHEYNE / Testimony, Induction and Reasonable Belief 19 JOHN WORRALL / Theory-Confirmation and History 31 DEBORAH G. -
Using the Scientific Method
Using the Scientific Method 2002 and 2014 GED Content Area: Science Focus: Scientific Method (2002) and Scientific Hypothesis and Investigation(2014) Activity Type: Graphic Organizer and GED Practice Objectives Students will be able to: Appreciate the purpose of the Scientific Method Understand key terms related to the Scientific Method: observation, hypothesis, test, experiment, result, conclusion Relate the Scientific Method to an experiment Answer GED questions based on the Scientific Method Directions 1. Print the handout “Using the Scientific Method” (next page). Pass out the handout to the class. 2. Explain that the scientific method is the way scientists learn about the world around us. This involves several steps, often in the form of experiments. Discuss the 5 steps in the chart on the handout and define the highlighted words. 3. Have a student or students read the first passage out loud. Ask the class to fill in the chart. They can fill in the chart individually or in pairs (discussing these concepts can help students develop their thinking skills). 4. Discuss the students’ answers. Samples: 1. Observation: Where there was Penicillium mold, there were also dead bacteria. 2. Hypothesis: The mold must produce a chemical that kills the bacteria. 3. Test: Grow more of the mold separately and then return it to the bacteria. 4. Result: When the material is returned to the mold, the bacteria died. 5. Conclusion: Penicillium kills bacteria. 5. Have students read the passage at the bottom of the page and answer the GED practice question. Choice (4) is correct because the doctor saw that when the chickens ate whole‐grain rice with thiamine, they did not have the disease. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
Paul Feyerabend
Against Method Fourth Edition Paul Feyerabend VERSO London • New York Analytical Index Being a Sketch of the Main Argument Introdnction 1 Science is an essentially anarchic enterprise: theoretical anarchism is more humanitarian and more likely to encourage progress than its law-and-order alternatives. 1 7 This is shown both by an examination of historical episodes and by an abstract analysis of the relation between idea and action. The only principle that does not inhibit progress is: anything goes. 2 13 For example, we may use hypotheses that contradict well-confirmed theories and/or well-established experimental results. We may advance science by proceeding counterinductively. 3 17 The consistency condition which demands that new hypotheses agree with accepted theories is unreasonable because it preserves the older theory, and not the better theory. Hypotheses contradicting well-confirmed theories give us evidence that cannot be obtained in any other way. Proliferation of theories is beneficial for science, while uniformity impairs its critical power. Uniformity also endangers the free development of the individual. 4 ~ There is no idea, however ancient and absurd, that is not capable of improving our knowledge. The whole history of thought is absorbed into science and is used for improving every single theory. Nor is political interference rejected. It may be needed to overcome the chauvinism of science that resists alternatives to the status quo. xxx ANAL YTICAL INDEX 5 33 No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof ofprogress. -
Contemporary Issues Concerning Scientific Realism
The Future of the Scientific Realism Debate: Contemporary Issues Concerning Scientific Realism Author(s): Curtis Forbes Source: Spontaneous Generations: A Journal for the History and Philosophy of Science, Vol. 9, No. 1 (2018) 1-11. Published by: The University of Toronto DOI: 10.4245/sponge.v9i1. EDITORIALOFFICES Institute for the History and Philosophy of Science and Technology Room 316 Victoria College, 91 Charles Street West Toronto, Ontario, Canada M5S 1K7 [email protected] Published online at jps.library.utoronto.ca/index.php/SpontaneousGenerations ISSN 1913 0465 Founded in 2006, Spontaneous Generations is an online academic journal published by graduate students at the Institute for the History and Philosophy of Science and Technology, University of Toronto. There is no subscription or membership fee. Spontaneous Generations provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The Future of the Scientific Realism Debate: Contemporary Issues Concerning Scientific Realism Curtis Forbes* I. Introduction “Philosophy,” Plato’s Socrates said, “begins in wonder” (Theaetetus, 155d). Two and a half millennia later, Alfred North Whitehead saw fit to add: “And, at the end, when philosophical thought has done its best, the wonder remains” (1938, 168). Nevertheless, we tend to no longer wonder about many questions that would have stumped (if not vexed) the ancients: “Why does water expand when it freezes?” “How can one substance change into another?” “What allows the sun to continue to shine so brightly, day after day, while all other sources of light and warmth exhaust their fuel sources at a rate in proportion to their brilliance?” Whitehead’s addendum to Plato was not wrong, however, in the sense that we derive our answers to such questions from the theories, models, and methods of modern science, not the systems, speculations, and arguments of modern philosophy. -
Regularity Theories
Regularity Theories Oxford Handbooks Online Regularity Theories Stathis Psillos The Oxford Handbook of Causation Edited by Helen Beebee, Christopher Hitchcock, and Peter Menzies Print Publication Date: Nov 2009 Subject: Philosophy, Metaphysics, Philosophy of Science Online Publication Date: Jan 2010 DOI: 10.1093/oxfordhb/9780199279739.003.0008 Abstract and Keywords This article articulates Regularity View of Causation (RVC) with an eye to two things: first, its conceptual development; second, its basic commitments and implications for what causation is. The article has chosen to present RVC in a way that respects its historical origins and unravels the steps of its articulation in the face of objections and criticism. It is important for the explication and defence of RVC to see it as a view of causation that emerged in a certain intellectual milieu. RVC has been developed as an attempt to remove efficiency from causation and hence, to view causation not as a productive relation but as a relation of dependence among discrete events. In particular, the thought that causation is regularity is meant to oppose metaphysical views of causation that posit powers or other kinds of entity that are supposed to enforce the regularities that there are in the world or to explain the alleged necessity that there is in causation. Keywords: Regularity View of Causation, causation, dependence, regularities, metaphysics, regularity theories 1. Introduction David Hume has made available a view of causation as it is in the world that can be called the Regularity View of Causation (RVC). His famous first definition runs thus: ‘We may define a CAUSE to be “An object precedent and contiguous to another, and where all the objects resembling the former are plac'd in like relations of precedency and contiguity to those objects, that resemble the latter” ([1739] 1978: 170). -
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes by Zvi Biener M.A. in Philosophy, University of Pittsburgh, 2004 B.A. in Physics, Rutgers University, 1995 B.A. in Philosophy, Rutgers University, 1995 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Zvi Biener It was defended on April 3, 2008 and approved by Peter Machamer J.E. McGuire Daniel Garber James G. Lennox Paolo Palmieri Dissertation Advisors: Peter Machamer, J.E. McGuire ii Copyright c by Zvi Biener 2008 iii The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes Zvi Biener, PhD University of Pittsburgh, 2008 The project of constructing a complete system of knowledge—a system capable of integrating all that is and could possibly be known—was common to many early-modern philosophers and was championed with particular alacrity by Ren´eDescartes. The inspiration for this project often came from mathematics in general and from geometry in particular: Just as propositions were ordered in a geometrical demonstration, the argument went, so should propositions be ordered in an overall system of knowledge. Science, it was thought, had to proceed more geometrico. I offer a new interpretation of ‘science more geometrico’ based on an analysis of the explanatory forms used in certain branches of geometry. These branches were optics, as- tronomy, and mechanics; the so-called subalternate, subordinate, or mixed-mathematical sciences. -
Poincare Conventions Relations
Conventions and Relations in Poincaré’s Philosophy of Science ∗∗∗ Stathis Psillos Dept of Philosophy and History of Science University of Athens, Greece & Rotman Institute of Philosophy & Dept of Philosophy, University of Western Ontario, Canada e-mail: [email protected] 1. Introduction Henri Poincare’s La Science et l’ Hypothése was translated into English in 1905. One of the first reviews—published already in 1905—was by Bertrand Russell. After praising Poincaré for his “power of co-ordinating the whole domain of mathematics and physics in a single system of ideas” (1905, 412), Russell—in this short by pointed review—put forward the two main interpretations of Poincaré’s thought that subsequently became standard. Poincaré was a conventionalist and a structuralist. According to Russell, Poincaré argued that geometry is wholly conventional and that the principles of mechanics are definitions. He rather quickly dismissed this view by taking the line that conventions are merely hypotheses which have been willingly withdrawn from empirical testing and claimed that they were not really necessary qua a different epistemic category. 1 Interestingly, he spent more time explaining that for Poincaré “science teaches us, not about things in themselves, but about their relations” (1905, 412). As Russell understood Poincaré’s main thesis, “if a really exists, a statement about a has no meaning unless it asserts a relation to a b which also really exists” (1905, 417). His prime disagreement with Poincaré was that he took that statements about qualities of real things are not devoid of meaning but simply unknowable. But apart from that, Russell endorsed this relationist reading of Poincaré and made two important points. -
Induction, Deduction, and the Scientific Method
INDUCTION, DEDUCTION, AND THE SCIENTIFIC METHOD AN ECLECTIC OVERVIEW OF THE PRACTICE OF SCIENCE IRVING ROTHCHILD Emeritus Professor of Reproductive Biology Case Western Reserve University School of Medicine Cleveland, Ohio © 2006 by the Society for the Study of Reproduction, Inc. CONTENTS ABSTRACT 1 INTRODUCTION 1 INDUCTION AND DEDUCTION 2 Etymology 2 Definitions 2 Induction 2 Deduction 3 THE SCIENTIFIC METHOD 3 BEING A SCIENTIST 4 Making Observations 4 Point of View 5 Asking the Right Question 6 Theorizing 6 The theory (or finding) that questions authority 7 Defending the controversial theory or finding 8 Eurekas 8 Experimentation 9 The failed experiment 9 Publishing 10 Statistics 10 Recognition 10 ACKNOWLEDGEMENTS 10 REFERENCES 11 © 2006 by the Society for the Study of Reproduction, Inc. © 2006 by the Society for the Study of Reproduction, Inc. INDUCTION, DEDUCTION, AND THE SCIENTIFIC METHOD AN ECLECTIC OVERVIEW OF THE PRACTICE OF SCIENCE IRVING ROTHCHILD* Emeritus Professor of Reproductive Biology Case Western Reserve University School of Medicine Cleveland, Ohio ABSTRACT: Science is a never-ending, always changing process through which we learn to know the material nature of the universe. Science does not deal with nonmaterial entities such as gods, for there is no way their existence can be either proved or disproved. No single, identifiable method applies to all branches of science; the only method, in fact, is whatever the scientist can use to find the solution to a problem. This includes induction, a form of logic that identifies similarities within a group of particulars, and deduction, a form of logic that identifies a particular by its resemblance to a set of accepted facts. -
A Quick How-To User-Guide to Debunking Pseudoscientific Claims
A quick how-to user-guide to debunking pseudoscientific claims Maxim Sukharev Arizona State University Have you ever wondered why we have never heard of psychics and palm readers winning millions of dollars in state or local lotteries or becoming Wall Street wolfs? Neither have I. Yet we are constantly bombarded by tabloid news on how vaccines cause autism (hint: they don’t), or some unknown firm building a mega-drive that defies the laws of physics (nope, that drive doesn’t work either). And the list continues on and on and on. Sometimes it looks quite legit as, say, various “natural” vitamin supplements that supposedly increase something that cannot be increased, or enhance something else that is most likely impossible to enhance by simply swallowing a few pills. Or constantly evolving diets that “sure work” giving a false relieve to those who really need to stop eating too much and actually pay frequent visits to a local gym. It is however understandable that most of us fall for such products and “news” just because we cannot be experts in everything, and we tend to trust various mass-media sources without even a glimpse of skepticism. So how can we distinguish between baloney statements and real exciting scientific discoveries and breakthroughs? In what follows I will try to do my best to provide a simple how-to user’s guide to debunking pseudoscientific claims. Just one more quick note before we begin: always remember that debunking a myth can actually backfire and reinforce it if done incorrectly. In 2005 the group of researchers [1] performed a set of experiments examining various true/false consumer health/food claims and their time-delayed effects on adults. -
A Defence of Falsificationism Against Feyerabend's Epistemological Anarchism Using the Example of Galilei's Observations with the Telescope
A Defence of Falsificationism against Feyerabend's Epistemological Anarchism using the Example of Galilei's Observations with the Telescope paper for “Understanding Scientific Theory Change“ held by Karim Thébault handed in by Mario Günther in winter term 2012/13 Logic and Philosophy of Science Munich Center for Mathematical Philosophy 1 Directory 1.Introduction........................................................................................................................ 3 2.Feyerabend's Epistemological Anarchism in Differentiation to Critical Rationalism.......4 2.1.Galilei's Utilisation of the Telescope and its Anarchistic Interpretation.....................5 2.2.Feyerabend's Principle of Tenacity and the Thesis of Incommensurability..............7 3.A Falsificationist Interpretation of Observations with and without the Telescope ...........8 4.Galilei's Observations en Détail....................................................................................... 10 4.1.The Explanation of Venus' Phases............................................................................ 11 4.2.The Establishment of the Irradiation Hypothesis..................................................... 13 4.3.The Moon and the Explanation of the Telescope's Functionality.............................14 4.4.Galilei's Incautious Defence of the Copernican Theory based on Reproducibility..15 5.A Rational Reconstruction of Galilei's Falsification of the Ptolemaic Theory................16 6.Evaluation.........................................................................................................................18