Whitepaper Chemical Etching in a World of Precision Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Whitepaper Chemical Etching in a World of Precision Engineering whitepaper chemical etching in a world of precision engineering innovators in chemical etching since 1970 introduction The trend in many industries is Chemical Etching in Micro Manufacturing This whitepaper on Chemical Etching aims to give you a good towards smaller, more complex understanding of the technology and its applications. It covers an Chemical Etching is a high precision subtractive and more delicate devices with manufacturing process that uses baths of introduction of the technology, explanation of detailed process, higher levels of performance. temperature- regulated etching chemicals to technical capabilities, comparison with other micro manufacturing Miniaturisation is no longer a wish; selectively remove material to produce high precision processes, markets served and applications, etc. it is a fact and we see across all metal parts in any desired shape. kind of industries. Compared to other micro manufacturing techniques, such as Stamping, EDM, CNC, Laser Cutting, and There are many advantages to making smaller Water Jetting, Chemical Etching is more cost efficient products, but you have to be aware of the challenges with shorter lead time, more design flexibility, and no that this implies. Designing smaller parts doesn’t mean need for deburring. It is an optimal choice for precision you can lower product performance expectations. metal part manufacturing, regardless of prototyping or Quite the contrary: the basic materials used to industrial production. transform designs into actual products must perform better than ever before, since the smallest irregularity will have a much larger effect on the end result. Micro manufacturing is becoming a big challenge for many industries. Metal parts need to get smaller by the day, yet stay ultra-precise, at a reasonable cost. 2 Tecan chemical etching whitepaper 3 chemical etching subtractive manufacturing Etchable Materials Almost any metal can be etched. These include (but are not limited to): • Stainless Steels: Wide Range of Austenitic, Ferritic and Martensitic Stainless Steels; • Mild Steel, Carbon Steel, Tool Steel, Spring Steel; What is Chemical Etching? • Aluminum: Including Aircraft/Aerospace grades; • Molybdenum; Chemical Etching is a subtractive manufacturing process that use baths of temperature-regulated etching • Nickel Alloys: Inconel, Mu-Metal, Alloy 42 (Nilo 42), Invar; chemicals to selectively remove material to produce high precision metal parts in any desired shape. • Copper: Including C110 and C101 (Oxygen Free); It is also referred to as Chemical Milling, Photo (Chemical) Etching, Electrochemical Etching, Photo (Chemical) • Brass, Phosphor Bronze, Beryllium Copper, Nickel Silver; Milling, Photo Chemical Machining, and Industrial Etching. The process is ideally suited to a wide range of • Many other materials – please call us to discuss your needs. materials. Most commonly used materials include stainless steel, non-, low-alloy steel, nickel, copper, bronze, brass, etc. Many other types of metal, e.g. gold, silver, aluminum, hastelloy, titanium, and special alloys such as You are always suggested to talk to one of our industry leading experts if you are considering any nitinol and vitrovac, can be etched under appropriate conditions. specific material that’s not listed above. Chemical Etching process Profile Geometries of Chemical Etching Chemical Etching process can be concluded in a series of steps including Cleaning, Laminating, Exposing, Single sided etching Specific depth, profile, or pattern can easily be achieved with Single Developing, Etching, and Stripping, after which rigorous inspection is automatically carried out on all Sided Etching. components. Photo sensitive coating UV light Double sided etching Double-sided Etching is used for engraving on both sides, which allows for extra design flexibility. Ratio etching With Ratio Etching, products can be etched to a 50/50, 60/40, 70/30, Metal or 80/20 ratios if necessary. Conical apertures or cutting edges can also be achieved. 1 - Cleaning 2 - Laminating 3 - Exposing Material is cleaned The cleaned metal ‘blank’ The metal sheet is then to remove all surface is then coated with a exposed to ultra-violet 2/3 Etching 2/3 Stage Etching can be used to achieve multiple depths, requiring contamination. This light-sensitive photoresist light, which hardens the additional imaging. provides a suitable surface in a clean room. photoresist. for resist adhesion later in . the process. Parallel profile etching Also referred to as “Seagull Profile”, Parallel Profile Etching is a typical etching profile used in particular to reduce etch cusp Etchant spray Photo-resist removed Photo-resist lacquer Convex profile etching For through-etched components Convex Prole Etching, also referred to as Under Etching Profile, is a typical industry standard edge condition. Concave Profile With Concave Profile Etching, also referred to as Over Etching Profile, a straighter edge profile can be achieved. 4- Developing 5 - Etching 6 - Stripping Unexposed areas are Etching chemistry is The resist is removed in developed away, leaving sprayed on both sides of the end to leave behind behind the bare metal. the metal at high pressure. burr- and stress-free This accurately removes components. the unwanted metal. 4 Tecan chemical etching whitepaper 5 Dimensions of Holes/Features Key Benefits of Chemical Etching: • Burr- and stress- free; Pitch • Eliminates cold working (common use in stamping and punching) or heat affected zones or recast layers for laser and wired EDM; • Low tooling cost; Hole Diameter • Design flexibility; • Fast turnaround; • Etched fold lines for ease of forming without tools; • Magnetic and other material properties unaffected; • Complex designs are easy to tool; • From prototype to industrial manufacturing volume; • Company logos, part numbers, and QR codes of all kinds can easily be etched into the surface during Corner Bar Slot Material manufacture. radius Width Width Thickness Chemically Etched Products: Material Minimum hole Minimum Minimum Minimum thickness (T) µm Ø µm radius µm bar size µm tolerance ±µm 25 > 75 38 25 15 50 > 90 45 40 25 75 > 110 55 60 25 100 > 140 70 80 25 150 > 210 105 120 25 200 > 240 120 160 30 250 > 300 150 200 38 300 > 360 180 240 45 400 > 460 230 320 60 500 > 560 280 400 75 If a job is beyond the specification limits set out in this document then special advice and approval must be sought from the Veco’s Application Engineering team. All the above parameters are subject to the following: • Component size; • Material type & grade; • Distribution of features; • Component quantity. 6 Tecan chemical etching whitepaper 7 chemical etching vs. micro stamping Stamping, also known as pressing, is a manufacturing process that place flat sheet metal into a stamping press, where a tool and die surface forms the metal into the desired shape. The trend of miniaturisation has driven the industry to the micro level, which is referred to as Micro Stamping. Cost Efficiency Design Flexibility Unlike Chemical Etching which features no Chemical Etching allows for more design tooling cost, Stamping always requires flexibility due to the fact that it requires no substantial investment in tooling and tooling investment and that it has a very short installation: both monetary-wise and time- lead time, while with Stamping modifying a wise. One stamping die can easily cost design means making a completely new die thousands of dollars, not to mention the extra and investing on tooling and setting up all over costs for setting up and maintenance costs again. This also means that Chemical Etching chemical etching in micro over time. is perfect for small amount prototyping as well as industrial production. Lead Time manufacturing With Stamping, the lead time can be 6-8 Quality/Accuracy weeks only for preparing the tooling. Even Chemical Etching is a high precision micro- after the stamping tool is completed, extra manufacturing technology. With etching, a time (and costs) will incur for setting up the higher level of accuracy and precision can be tooling in the stamping press. With Chemical achieved. Moreover, etched parts are Etching, lead time is a matter of days. completely burr- and stress-free while Compared to those who still stamp their stamped parts feature partial burrs and stress precision metal components, you can receive at cutting edge. Although minor burr or stress your ultra-precision etched parts even before can be acceptable for some applications, their stamping tool is ready! it might be a stumbling block for your next breakthrough. Compared to Stamping, or Micro Stamping, Chemical Etching is clearly the more effective process no matter for prototyping or industrial production with shorter lead time, lower costs, better quality, and more design flexibility. 9 chemical etching vs. laser cutting chemical etching vs. electro discharge machining Laser Cutting is another subtractive manufacturing process. It works by directing the output of a high-power laser most commonly through optics to cut materials in order to achieve the desired products. Electrical Discharge Machining (EDM), also known as spark machining, burning, die sinking, wire burning, or wire erosion, is a manufacturing process whereby a desired shape is obtained by removing materials with Cost Efficiency Design Complexity electrical discharges (sparks). When it’s a small volume production or Chemical Etching and Laser Cutting are both prototyping, Laser Cutting can be more cost- flexible regarding design. When the design is effective
Recommended publications
  • Complex Multi-System Integration Problems Associated with Titanium Metalworking and Manufacture: System of Systems Aproach—Part I
    metals Article Complex Multi-System Integration Problems Associated with Titanium Metalworking and Manufacture: System of Systems Aproach—Part I Adam Stroud 1 and Atila Ertas 2,* 1 Ellwood Texas Forge, Houston, TX 77045, USA; [email protected] 2 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected]; Tel.: +1-(806)-834-57788 Received: 11 January 2019; Accepted: 26 March 2019; Published: 9 April 2019 Abstract: Titanium has an excellent combination of properties that make it an attractive material for use in aerospace applications. The one area in which titanium is not aligned with customer needs is affordability. Components made from titanium are many times more expensive than those manufactured from other alloys. The supply chain of an extruded product is no exception. A breakthrough in extrusion cost reduction would enable wider adoption of titanium in many structural member applications. In an effort to accomplish any breakthrough in titanium component costs, the entire supply chain for manufacturing should be evaluated simultaneously. Due to the complex interaction of the many facets of the systems in a manufacturing supply chain, it is inferred that the supply chain in its entirety must be the focus of the design activity in order to be successful. Design improvements on a single facet of manufacture may have little to no effect on the manufacture of the component. If the improvement has a detrimental impact on another system in the supply chain, overall performance may be lowered. The use of a system of systems’ (SoS) design approach was used due to its capability to address complex multi-system integration problems associated with titanium metalworking and manufacture.
    [Show full text]
  • Materials Resources
    Woods Sat 9am – 6pm, Sun 9am – 5pm (303) 290 – 0007 Austin Hardwoods Wood, tools, hardware, plans, books http://www.austinhardwoods.com/ 975 W. Mississippi Avenue Collector’s Specialty Woods Denver, CO 80223 http://www.cswoods.com/ M – F 7:30am – 5pm, Sat 7:30am – 1pm Warehouse and Showroom (303) 733 – 1292 4355 Monaco St. Unit A Denver, CO 80216 Wood stock and sheet, Molding, Veneer M – F 8am – 5pm (303) 355 - 0302 Frank Paxton Lumber Company Woodyard, Kiln Drying Facility, Woodshop, http://www.paxtonwood.com/ Showroom 4837 Jackson Street 8055 County Road 570 Denver, CO 80216 Gardner , CO 81040 Office 7:30am – 5pm, Warehouse 8am - 4:30pm Open by Appointment Only Woodcrafter’s Store M - F 8 am – 5pm, Sat 8am – 800 – 746 – 2413 12pm Lumber, Table tops (raw), thick wood, burl, (303) 399 – 6810, (303) 399 – 6047 matched wood, blocks, table bases Wood Stock and sheet Centennial Woods B&B Rare Woods http://www.centennialwoods.com/ http://www.wood-veneers.com/ Wyoming 871 Brickyard Circle Unit C4 (307) 760 – 8037, (307) 742 – 3672 Golden, CO 80403 Doors, flooring, furniture, siding M –F 9am – 4pm (303) 986 - 2585 Klingspor’s Woodworking Shop http://www.woodworkingshop.com/ Rockler Woodworking and Hardware North Carolina http://www.Rockler.com/ Tools, Hardware, Finishing Supplies 2553 S Colorado Blvd Ste 108 Denver, CO 80222 Lee Valley Tools M – F 9am – 7pm, Sat 9am – 6pm, http://www.leevalley.com Sun 11am – 4pm Canada (303) 782 – 0588 Woodworking, tools, gardening tools Limited wood stock, Woodworking tools, plans, finishing supplies, and hardware Metals Tool King, LLC Altitude Steel http://www.toolking.com/ http://www.altitudesteel.com/ th 11111 West 6 Avenue Unit D 1401 Umatilla St.
    [Show full text]
  • Development of Non-Conventional Casting Processes
    D 2014 DEVELOPMENT OF NON-CONVENTIONAL CASTING PROCESSES RUI JORGE DE LEMOS NETO TESE DE DOUTORAMENTO DOUTORAMENTO EM ENGENHARIA MECÂNICA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO © Rui Neto, 2014 ii | P a g e Acknowledgments There were many people and entities who scientifically, financially and emotionally contributed to the realization of this thesis. It is therefore with great pleasure that I express my sincere gratitude to them. To my late father, wood patternmaker for 49 years, who taught me the foundry fundaments and life values, namely that work is the basis of the life. To Professor Ana Reis, Assistant Professor at the Faculty of Engineering of Porto who is a big friend and was the main driving force and the first responsible for the presentation of this thesis To Professors Jorge Lino, Associate Professor at the Faculty of Engineering of Porto University, and Professor Teresa Duarte, Assistant Professor at the Faculty of Engineering, for the motivation and tireless support. I also thank the confidence that always placed in my work, but above all, I thank the friendship always demonstrated. To Professor Antonio Torres Marques, Full Professor at the Faculty of Engineering of Porto, the numerous attempts, often frustrated, immovable and constantly renewed to take this work forward. To Professor António Barbedo de Magalhães, Professor Emeritus already retired, my true master and great friend, the tireless attempts to get me to take this work forward and the unshakable confidence that for 34 years always placed in me. To all my students, especially the ones who intervened in these teamwork the kindness with which they heard me, and especially what they taught me.
    [Show full text]
  • Chemical Etching Electroforming Laser Cutting Printed Glass & Film SMT Stencils
    Chemical etching electroforming Laser Cutting Printed glass & film SMT Stencils Our Philosophy Thin Metal Parts (TMP) has clear industry leadership in the following areas: • The most complete line of HIGH PERFORMANCE thin metal parts: Electroformed, Laser-Cut and Chem-Milled • Continued TECHNOLOGY LEADERSHIP in the industry...with significant and on-going R&D • An ISO 9001:2008 QUALITY certified company with complete process controls and analytical laboratory. • Highly-trained and dedicated people to provide true APPLICATIONS SUPPORT • A culture of COMMITMENT TO CUSTOMERS with continued investment in people, facilities, equipment and systems to support our commitment to be THE INDUSTRY’S BEST VALUE. We encourage you to closely compare TMP’s products and services to any other supplier. We are confident that TMP delivers the BEST TRUE VALUE. 4733 Centennial Blvd., Colorado Springs, CO 80919 (719) 268-8300 • [email protected] • www.thinmetalparts.com History of Thin Metal Parts 1985 Specialty Parts, a product line of Photo Stencil, was started to address the precision parts needs of the Photo Stencil circuit board manufacturing customers using photo-chemical milling process. 1990 Parts began to be manufactured using the laser cutting process. 1997 Became the first parts manufacturer to become ISO 9001 certified (now ISO 9001:2008). 1999 Began using the electroforming process to manufacture precision metal parts. 2002 Introduced multi-layer and 3D electroforming 2002 The Specialty Products Division became the Thin Metal Parts Company to better focus efforts on thin metal parts development. 2004 Significant efforts began to target new industries in addition to electronics. 2007 Thin Metal Parts acquired industry leading photo-plotting equipment, increasing quality and capability.
    [Show full text]
  • Chemical Machining and Milling
    CHEMICAL MACHINING AND MILLING Introduction Chemical machining (CM) is the controlled dissolution of workpiece material (etching) by means of a strong chemical reagent (etchant). In CM material is removed from selected areas of workpiece by immersing it in a chemical reagents or etchants; such as acids and alkaline solutions. Material is removed by microscopic electrochemical cell action, as occurs in corrosion or chemical dissolution of a metal. This controlled chemical dissolution will simultaneously etch all exposed surfaces even though the penetration rates of the material removal may be only 0.0025–0.1 mm/min. The basic process takes many forms: chemical milling of pockets, contours, overall metal removal, chemical blanking for etching through thin sheets; photochemical machining (pcm) for etching by using of photosensitive resists in microelectronics; chemical or electrochemical polishing where weak chemical reagents are used (sometimes with remote electric assist) for polishing or deburring and chemical jet machining where a single chemically active jet is used. A schematic of chemical machining process is shown in Figure 6. Figure 6: (a) Schematic of chemical machining process (b) Stages in producing a profiled cavity by chemical machining (Kalpakjain & Schmid) Chemical milling In chemical milling, shallow cavities are produced on plates, sheets, forgings and extrusions. The two key materials used in chemical milling process are etchant and maskant. Etchants are acid or alkaline solutions maintained within controlled ranges of chemical composition and temperature. Maskants are specially designed elastomeric products that are hand strippable and chemically resistant to the harsh etchants. Steps in chemical milling Residual stress relieving: If the part to be machined has residual stresses from the previous processing, these stresses first should be relieved in order to prevent warping after chemical milling.
    [Show full text]
  • Burrs—Analysis, Control and Removal CIRP Annals
    CIRP Annals - Manufacturing Technology 58 (2009) 519–542 Contents lists available at ScienceDirect CIRP Annals - Manufacturing Technology journal homepage: http://ees.elsevier.com/cirp/default.asp Burrs—Analysis, control and removal J.C. Aurich (1)a,*, D. Dornfeld (1)b, P.J. Arrazola (3)c, V. Franke a, L. Leitz a, S. Min (2)b a Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, Germany b Laboratory for Manufacturing and Sustainability, University of California, Berkeley, USA c Manufacturing Department, Faculty of Engineering, Mondragon University, Mondrago´n, Spain ARTICLE INFO ABSTRACT Keywords: Increasing demands on function and performance call for burr-free workpiece edges after machining. Machining Since deburring is a costly and non-value-added operation, the understanding and control of burr Burr formation is a research topic with high relevance to industrial applications. Following a review of burr Burr control classifications along with the corresponding measurement technologies, burr formation mechanisms in machining are described. Deburring and burr control are two possible ways to deal with burrs. For both, an insight into current research results are presented. Finally, a number of case studies on burr formation, control and deburring along with their economic implications are presented. ß 2009 CIRP. 1. Motivation and introduction to issues regarding burrs asked to name the manufacturing share related to burrs for a specific workpiece. The expenses are caused by an increase of The demands placed by designers on workpiece performance about 15% in man power and cycle times. In addition, a 2% share in and functionality are increasing rapidly. Important aspects of the reject rate and a 4% share in machine breakdown times due to manufacturing’s contribution to the fulfillment of these demands burrs were reported (see Fig.
    [Show full text]
  • Variables Affecting the Chemical Machining of Stainless Steel 420 Dr
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013 Variables Affecting the Chemical Machining of Stainless Steel 420 Dr. Haydar A. H. Al-Ethari, Dr. Kadhim Finteel Alsultani, Nasreen Dakhil F. Abstract— Chemical machining has a considerable value in unique characteristics, it should be approached with the idea the solution of machining problems that are constantly arising that this industrial tool can do jobs not practical or possible due to introduction of new materials and requirement for high with any other metal working methods (Langworthy M., surface finish and dimensional accuracy, complicated shape and 1994). It has a considerable value in the solution of special size which cannot be achieved by the conventional machining processes. The present work is aimed at studying the problems that are constantly arising as the result of the effect of machining temperature, machining time, and previous introduction of new materials. cold working on the metal removal rate and the surface finish of All the common metals including aluminum, copper, zinc, chemically machined samples of stainless steel 420 using a steel, lead, and nickel can be chemically machined. Many mixture of acids (H2O + HCl + HNO3 + HF + HCOOH) as an exotic metals such as titanium, molybdenum, and zirconium, etchant. Alloy samples of (44.5×44.5×3mm) dimensions and cold as well as nonmetallic materials including glass, ceramics, rolled alloy samples with the same dimensions were chemically machined. Four machining temperatures (45, 50, 55, and 58oC) and some plastics, can also be used with the process for each of which five machining times (2, 4, 6, 8, and 10min) (Blak.JT, DeGarmo, 2007).
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Magnesium Casting Technology for Structural Applications
    Available online at www.sciencedirect.com Journal of Magnesium and Alloys 1 (2013) 2e22 www.elsevier.com/journals/journal-of-magnesium-and-alloys/2213-9567 Full length article Magnesium casting technology for structural applications Alan A. Luo a,b,* a Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA b Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA Abstract This paper summarizes the melting and casting processes for magnesium alloys. It also reviews the historical development of magnesium castings and their structural uses in the western world since 1921 when Dow began producing magnesium pistons. Magnesium casting technology was well developed during and after World War II, both in gravity sand and permanent mold casting as well as high-pressure die casting, for aerospace, defense and automotive applications. In the last 20 years, most of the development has been focused on thin-wall die casting ap- plications in the automotive industry, taking advantages of the excellent castability of modern magnesium alloys. Recently, the continued expansion of magnesium casting applications into automotive, defense, aerospace, electronics and power tools has led to the diversification of casting processes into vacuum die casting, low-pressure die casting, squeeze casting, lost foam casting, ablation casting as well as semi-solid casting. This paper will also review the historical, current and potential structural use of magnesium with a focus on automotive applications. The technical challenges of magnesium structural applications are also discussed. Increasing worldwide energy demand, environment protection and government regulations will stimulate more applications of lightweight magnesium castings in the next few decades.
    [Show full text]
  • An Investigation of Bonding Mechanism in Metal Cladding
    AN INVESTIGATION OF BONDING MECHANISM IN METAL CLADDING BY WARM ROLLING A Dissertation by WEI YANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2011 Major Subject: Mechanical Engineering An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling Copyright 2011 Wei Yang AN INVESTIGATION OF BONDING MECHANISM IN METAL CLADDING BY WARM ROLLING A Dissertation by WEI YANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Jyhwen Wang Committee Members, Amine Benzerga Karl Ted Hartwig Ibrahim Karaman Head of Department, Jerald Caton December 2011 Major Subject: Mechanical Engineering iii ABSTRACT An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling. (December 2011) Wei Yang, B.S., Harbin Institute of Technology; M.S., Harbin Institute of Technology Chair of Advisory Committee: Dr. Jyhwen Wang Clad metals are extensively used for their multi-functionality and their optimal combination of quality and cost. Roll bonding is an effective and economic processing approach to making clad metals. This dissertation presents an experimental investigation of the roll cladding process as well as thermo-mechanical modeling of mechanism for roll bonding of clad metals. The objectives of this research are to investigate the bonding mechanism of dissimilar metals in a warm rolling process and to advance the knowledge of the roll cladding process. To accomplish the objectives, aluminum 1100 sheet (Al 1100) and stainless steel 304 sheet (SST 304) are bonded by warm rolling under controlled conditions.
    [Show full text]
  • Sheet Metal Welding Code
    AWS D9.1M/D9.1:2000 An American National Standard Sheet Metal Welding Code Key Words—Sheet metal, arc welding, braze welding, AWS D9.1M/D9.1:2000 joint designs, qualification, workmanship, An American National Standard inspection, base metals, filler metals Approved by American National Standards Institute August 3, 2000 Sheet Metal Welding Code Supersedes ANSI/AWS D9.1-90 Prepared by AWS D9 Committee on Welding, Brazing, and Soldering of Sheet Metal Under the Direction of AWS Technical Activities Committee Approved by AWS Board of Directors Abstract This code covers the arc and braze welding requirements for nonstructural sheet metal fabrications using the commonly welded metals available in sheet form. Requirements and limitations governing procedure and performance qualification are presented, and workmanship and inspection standards are supplied. The nonmandatory annexes provide useful infor- mation on materials and processes. 550 N.W. LeJeune Road, Miami, Florida 33126 Table of Contents Page No. Personnel .................................................................................................................................................................... iii Foreword......................................................................................................................................................................iv Dedication ....................................................................................................................................................................v List of Tables............................................................................................................................................................
    [Show full text]
  • Trends in Lightweighting with Metal Castings
    Trends in Lightweighting With Metal Castings Opportunities for lightweighting with metal castings abound through material choice and smart designs. ANDREW HALONEN, MAYFLOWER CONSULTING LLC Note: This article is based on a presentation the author was scheduled to make at the 2020 Metalcasting Congress in April, which was unfortunately cancelled due to the coronavirus. etal castings are found in almost all industrial markets, and certainly in 4 KEY the transportation business. Cast- ings can be produced in many materials and processes, each offer- ing its uniqueness in properties, in WAYS tolerances and in the ability to seek M efficiencies. Efficiency becomes the ability to design and produce to an LIGHTWEIGHTING WITH optimized shape, minimizing material and post-processing. New tools METAL CASTING IS MET and new foundry techniques, combined with the long-honed skills of the metalcaster, are a winning combination for the future. WITH RESISTANCE Lightweighting is a term that encompasses the task of reducing material to achieve weight reduction. There are motivations to cut weight, just as there Cost is king. is resistance to cut weight. Improving performance and assembly ergonom- ics, reducing part count, and reducing material costs are some of the motiva- System over tions. Yet considering these factors, it does take considerable effort to reduce component. component weight. Changing the Cost Is King supply chain. Low cost usually wins. In ground vehicle transportation, lightweighting activity is constant, yet it is usually delivered as cost neutral. If there is an Other material appetite to cut weight, we often ask, “How much per pound will you pay?” innovations.
    [Show full text]