The Seaweed Fly (Diptera: Coelopidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Seaweed Fly (Diptera: Coelopidae) View metadata, citation and similar EEN919papers at core.ac.uk Dispatch: 08.09.07 Journal: EEN brought to you by CORE Journal Name Manuscript No. B Author Received: No. of pages: 6 ME:provided Pradeep by Stirling Online Research Repository 1 Ecological Entomology (2007), 32, 1–6 2 3 4 5 6 7 8 Change in the distribution of a member of the strand 9 line community: the seaweed fl y (Diptera: Coelopidae) 10 11 12 DOMINIC A. E D W A R D 1 , JENNIFER E. BLYTH 2 , RODERICK 13 MCKEE 1 and ANDRÉ SIMON GILBURN 1 1 School of Biological and Environmental Sciences, 14 2 15 University of Stirling, Stirling, Scotland, U.K. and Environmental and Marine Biology, Åbo Akademi University, Turku, Finland 16 17 Abstract . 1. Coastal organisms are predicted to be particularly susceptible to the 18 impact of global warming. In this study the distribution and relative abundance of two 19 coastal invertebrates, Coelopa frigida (Fabricius) and C. pilipes are investigated. 20 21 2. Coelopa pilipes has a more southerly distribution than C. frigida , and prefers a 22 warmer climate. Coelopa pilipes is less resistant to sub-zero temperatures than C. frigida 23 and its northerly distribution is probably limited by cold winter days. 24 3. The most recent distribution map of C. frigida and C. pilipes in northern Europe 25 was published a decade ago and showed the northerly extent of the distribution of 26 C. pilipes reaching the north coast of mainland Scotland but its complete absence from 27 the Western and Northern Isles. 28 4. C. pilipes has now spread throughout the Western Isles and the Orkney Islands but 29 is still absent from Shetland. There has also been an increase in the relative frequency of 30 C. pilipes at sites harbouring coelopids on the British mainland. A similar pattern of 31 distribution change along the west coast of Sweden is reported. 32 33 5. It is proposed that these changes have occurred primarily as a result of global 34 warming and in particular due to the recent increase in winter temperatures. A number 35 of other indirect effects may have also contributed to these changes, including a probable 36 change in macroalgae distribution. The implications of these changes for the wrack bed 37 ecosystem and at higher trophic levels are considered. 38 39 Key words . Climate change , Coelopidae , competition , distribution change , global 40 warming , seaweed fl y . 41 42 43 Introduction Hughes, 2000 ). Poleward range shifts have since attracted em- 44 pirical support on a global scale ( Walther et al. , 2002; Parmesan 45 Global temperatures have increased by approximately 0.6 °C & Yohe, 2003; Hickling et al. , 2005, 2006 ; Mieszkowska et al. , 46 over the past century ( Jones et al. , 1999; IPCC, 2001 ). In Central 2006 ) and models show that these changes can be associated 47 England, the 1990s were approximately 0.5 °C warmer than the with a changing climate ( Walther et al. , 2005 ). 48 1961 – 1990 average; with the greatest increase in temperature Coastal organisms may be particularly susceptible to the im- 49 being experienced during the winter months ( Hulme et al. , pacts of global warming resulting from increases in both sea 50 2002; Watkinson et al. , 2004 ). It is now increasingly apparent temperature and rising sea levels ( Lawrence & Soame, 2004; 51 that climatic change will not only contribute to ecological Watkinson et al. , 2004 ). Correspondingly, a number of intertidal 52 changes in the future, but that change is occurring in the present organisms found on rocky shores around Britain have under- 53 ( Hughes, 2000; Root et al. , 2003 ). One widely predicted out- gone poleward range shifts associated with climate change 54 come is that the ranges of many species will shift either pole- ( Mieszkowska et al. , 2006 ). Among the organisms most likely 55 ward or to higher altitudes ( Barry et al. , 1995; Parmesan, 1996; to be affected are the coastal invertebrates ( Beukema et al. , 56 2001; Lawrence & Soame, 2004; Kendall et al. , 2004 ). Changes 57 to coastal invertebrate communities may be expected to have a 58 Correspondence: Andre Gilburn, School of Biological and Environ- subsequent effect upon other species, particularly avifauna, that 59 mental Sciences, University of Stirling, Stirling, Scotland FK9 4LA, depend upon them as a food source ( Kendall et al. , 2004; 60 U.K. E-mail: [email protected] Lawrence & Soame, 2004 ). 61 62 © 2007 The Authors 63 Journal compilation © 2007 The Royal Entomological Society 1 1 2 Dominic A. Edward et al. 2 3 One particularly understudied coastal ecosystem is the strand temperatures. In addition, the larvae of C. frigida are found to 4 line community ( Kendall et al. , 2004 ), which is founded prima- prefer cooler microhabitats within wrack beds ( Phillips et al. , 5 rily upon marine macroalgae deposited on beaches by storms 1995b ). Data on the relative abundance of northern European 6 and tides. Seaweed flies (Diptera: Coelopidae) inhabit deep al- populations of Coelopids going back nearly 40 years provide an 7 gal deposits, known as wrack beds, deposited on the strand line excellent opportunity to consider the impacts of climate change 8 close to rocky shores ( Dobson, 1974 ). Coelopid larvae are en- upon the strand line community. The aim of this study is there- 9 tirely dependent upon algae for their development and adults fore to assess the relative responses of C. frigida and C. pilipes 10 mate and feed within deposits, using them as places of shelter. to climate change. 11 Both the larval and adult life stages play an important functional 12 role; accelerating decomposition and recycling of nutrients 13 ( Harrison, 1977; Robertson & Mann, 1980; Koop & Griffiths, Materials and methods 14 1982; Cullen et al. , 1987 ) and providing a food source for 15 coastal bird species ( Feare & Summers, 1985 ). Experimental procedure 16 The relative distribution and abundance of two northern 17 European coelopids, Coelopa frigida (Fabricius) and Coelopa Historical data were collated from previous collections 1 18 pilipes (Halliday), has been studied on a number of previous made between February 1967 and October 1990 ( Butlin, 19 occasions ( Egglishaw, 1960; Dobson, 1974; Butlin, 1983; 1983; Gilburn, 1992 ; Phillips et al., 1995; Day & Gilburn, 20 Phillips et al. , 1995b ; see Fig. 1 ). Coelopa frigida occupies unpubl. data). The same areas as for the historical collections 21 higher latitudes ranging from the north coast of France as far were re-sampled between August 2004 and December 2005, 22 north as Iceland and Spitzbergen. In contrast, the range of returning to the same beach and at the same time of year 23 C. pilipes extends farther south down the Atlantic coastline of where possible. If no wrack bed could be found at a site then 24 France yet north only so far as the northern coast of the we located and sampled from the nearest wrack bed to the 25 Scottish mainland. C. pilipes is notably absent from the original site. In some regions no information was available on 26 Western and Northern Isles of Scotland. While both species the exact location of past collections, for example Norway 27 occur sympatrically throughout much of their range, within and the Scottish Islands. In these cases, a number of sampling 28 British wrack beds C. frigida has been described as the most sites were identified to give a comprehensive description of 29 abundant of the large Diptera ( Egglishaw, 1960 ). On mainland coelopid populations. 30 Europe C. pilipes has been recorded as far north as the west The same two collection techniques were adopted as used to 31 coast of Sweden though only very rarely at greater abundances collect the historical data. If sufficient adult flies were present 32 than C. frigida . at a site then they were collected by mouth pooter and trans- 33 While various factors may play a part in determining the ported back to Stirling, where the relative abundance of the two 34 relative abundances of C. frigida and C. pilipes the most impor- species was calculated. At sites lacking large numbers of adults, 35 tant is almost certainly temperature ( Phillips et al. , 1995b ). This collections of larvae were made from various locations and 36 is reflected in a greater abundance of C. pilipes during the sum- depths within the wrack bed and placed in large plastic tanks. 37 mer months ( Remmert, 1965; Phillips et al. , 1995b ) and a Larvae were transported back to Stirling and allowed to de- 38 greater susceptibility of this species to the effects of freezing velop within the seaweed in which they were collected. Any 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Fig. 1. Distribution maps of C. frigida and 53 C. pilipes , past and present. The map on the 16 54 left shows the historical distribution, adapted 55 from Phillips et al. (1995b) , while on the right data from the current study are shown. 56 Filled circles represent populations of 57 C. frigida ( C. pilipes rare if present), empty 58 circles populations of C. pilipes ( C. frigida 59 rare if present) and half fi lled circles mixed 60 populations. 61 62 © 2007 The Authors 63 Journal compilation © 2007 The Royal Entomological Society, Ecological Entomology, 32, 1–6 1 Change in seaweed fl y distribution 3 2 3 collections at high larval density were given additional seaweed was not found to affect the proportion of C. pilipes within = = 4 to reduce the effects of larval competition. The relative number British mainland populations ( F1,66 0.06, P NS). 5 of C. frigida and C. pilipes adults eclosing from these cages 6 was then determined. 7 Scottish Island populations of Coelopids 8 9 Statistical analysis Phillips et al.
Recommended publications
  • Life Cycle and Kelp Consumption of Paractora Dreuxi Mirabilis (Diptera: Helcomyzidae): a Primary Decomposer of Stranded Kelp on Marion Island
    18 S. Afr. T. Nav. Antarkt., Deel 14, 1984 1 Life cycle and kelp consumption of Paractora dreuxi mirabilis (Diptera: Helcomyzidae): A primary decomposer of stranded kelp on Marion Island J.E. Crafford Department of Entomology University of Pretoria, Hatfield , Pretoria 0083 Wrack beds of the intertidal kelp Durvillea antarctica (Cham.) Apetenus liroralis and Paractora dreuxi mirabilis. are closely Har. on Marion Island (46°54' S, 37"45' E) sustain large kelp fly associated with wrack beds and decomposing kelp. populatior.s. Paractora dreuxi mirabilis (Seguy) is a primary Little is known about the nutrient and energy pathways decomposer of stranded Durv11lea with larvae reaching a operative in the littoral zone on Marion Island (Smith 1977). biomass of2 gper kg ofdecomposing kelp (wet mass). At 10°C Fronds of Durvillea antarccica, an epilitic phaeophyte Paractora completes its life cycle in 80-120 days. Egg, larval and abounding in the intertidal zone, continuously wash up on pupal stages last 4, 60 and 40 days respectively. Larvae eat 0,5 beaches around the island. After heavy seas fronds frequently rimes their own dry mass in kelp per day. They attain an indivi­ pile up into large and dense wrack beds. Paractora larvae are dual live mass of up to JOO mg. The feeding and burrowing the major decomposers of beached Durvillea, representing by activity of larvae probably enhance microbial decay ofbeached far the greatest biomass of decomposers in beached kelp kelp. Paractora larvae are preyed on by vertebrate insectivores (Crafford, unpublished) and constituting an easily explo1table and probably form an important link in nutrient and energy localised food resource for secondary consumers such as the chains in the littoral zone on Marion Island.
    [Show full text]
  • Superfamilies Tephritoidea and Sciomyzoidea (Dip- Tera: Brachycera) Kaj Winqvist & Jere Kahanpää
    20 © Sahlbergia Vol. 12: 20–32, 2007 Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Dip- tera: Brachycera) Kaj Winqvist & Jere Kahanpää Winqvist, K. & Kahanpää, J. 2007: Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Diptera: Brachycera). — Sahlbergia 12:20-32, Helsinki, Finland, ISSN 1237-3273. Another part of the updated checklist of Finnish flies is presented. This part covers the families Lonchaeidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulididae, Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyii- dae, Sciomyzidae and Sepsidae. Eight species are recorded from Finland for the first time. The following ten species have been erroneously reported from Finland and are here deleted from the Finnish checklist: Chaetolonchaea das- yops (Meigen, 1826), Earomyia crystallophila (Becker, 1895), Lonchaea hirti- ceps Zetterstedt, 1837, Lonchaea laticornis Meigen, 1826, Prochyliza lundbecki (Duda, 1924), Campiglossa achyrophori (Loew, 1869), Campiglossa irrorata (Fallén, 1814), Campiglossa tessellata (Loew, 1844), Dioxyna sororcula (Wie- demann, 1830) and Tephritis nigricauda (Loew, 1856). The Finnish records of Lonchaeidae: Lonchaea bruggeri Morge, Lonchaea contigua Collin, Lonchaea difficilis Hackman and Piophilidae: Allopiophila dudai (Frey) are considered dubious. The total number of species of Tephritoidea and Sciomyzoidea found from Finland is now 262. Kaj Winqvist, Zoological Museum, University of Turku, FI-20014 Turku, Finland. Email: [email protected] Jere Kahanpää, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland. Email: kahanpaa@iki.fi Introduction new millennium there was no concentrated The last complete checklist of Finnish Dipte- Finnish effort to study just these particular ra was published in Hackman (1980a, 1980b). groups. Consequently, before our work the Recent checklists of Finnish species have level of knowledge on Finnish fauna in these been published for ‘lower Brachycera’ i.e.
    [Show full text]
  • 1659 2012-10323.Pdf
    Zootaxa 3478: 553–569 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:EC0F0A87-8BF4-42C6-8561-0AC2ED45E00F The new genus Acrocephalomyia, and a new species of Ropalomera from Costa Rica, with additional records for other Mesoamerican species (Diptera: Ropalomeridae) SERGIO IBÁÑEZ-BERNAL 1 & VICENTE HERNÁNDEZ-ORTIZ 2 1Red Ambiente y Sustentabilidad, Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, México. E–mail: [email protected] 2Red Interacciones Multitróficas, Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, México. E–mail: [email protected] Abstract New taxa of the family Ropalomeridae from Costa Rica are described, and additional records of ropalomerid flies from Mexico and Central America are provided. The new genus and species Acrocephalomyia zumbadoi can be easily distin- guished from all other ropalomerid genera by the following combination of characters: angular forward projection of head, absence of ocelli, flat face, bare arista, long scutum, and scutellum triangular-shaped and dorsally flattened with only one pair of apical bristles with bases approximated. The new species Ropalomera aterrima can be recognized from congeners by remarkable differences of the head, the shape of the scutellum, the absence of scutal vittae, fumose wings, and by the black coloration of the body, ocellar bristles large, one postpronotal bristle, scutum without pollinose vittae and flat scutel- lum. Lenkokroeberia chryserea Prado and Kroeberia fuliginosa Lindner are newly confirmed for Costa Rica.
    [Show full text]
  • Genetic Divergence and Phenotypic Plasticity Contribute to Variation in Cuticular Hydrocarbons in the Seaweed Fly Coelopa Frigida
    Received: 23 June 2019 | Revised: 19 August 2019 | Accepted: 26 August 2019 DOI: 10.1002/ece3.5690 ORIGINAL RESEARCH Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida Emma Berdan1 | Swantje Enge2,3 | Göran M. Nylund3 | Maren Wellenreuther4,5 | Gerrit A. Martens6 | Henrik Pavia3 1Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden Abstract 2Institute for Chemistry and Biology of the Cuticular hydrocarbons (CHCs) form the boundary between insects and their envi‐ Marine Environment, Carl‐von‐Ossietzky ronments and often act as essential cues for species, mate, and kin recognition. This University Oldenburg, Wilhelmshaven, Germany complex polygenic trait can be highly variable both among and within species, but 3Department of Marine Sciences – the causes of this variation, especially the genetic basis, are largely unknown. In this Tjärnö, University of Gothenburg, Strömstad, Sweden study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, 4Plant & Food Research Limited, Nelson, Coelopa frigida, and found that composition was affected by both genetic (sex and New Zealand population) and environmental (larval diet) factors. We subsequently conducted be‐ 5School of Biological Sciences, The havioral trials that show CHCs are likely used as a sexual signal. We identified general University of Auckland, Auckland, New Zealand shifts in CHC chemistry as well as individual compounds and found that the meth‐ 6 Institute for Zoology, University of ylated compounds, mean chain length, proportion of alkenes, and normalized total Hamburg, Hamburg, Germany CHCs differed between sexes and populations. We combined these data with whole Correspondence genome resequencing data to examine the genetic underpinnings of these differ‐ Emma Berdan, Department of Marine Sciences, University of Gothenburg, Box ences.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • UC Santa Barbara Posters
    UC Santa Barbara Posters Title From rejection to collection! A new entomology collection at the University of California, Santa Barbara Museum of Natural History takes the university by swarm. Permalink https://escholarship.org/uc/item/90j9s4jh Authors Behm, Rachel Seltmann, Katja, PhD Publication Date 2017 License https://creativecommons.org/licenses/by-sa/4.0/ 4.0 eScholarship.org Powered by the California Digital Library University of California From rejection to collection! A new entomology collection at the University of California, Santa Barbara Museum of Natural History takes the university by swarm. Rachel Behm & Katja C. Seltmann Cheadle Center for Biodiversity and Ecological Restoration, Harder South Building 578, Santa Barbara, CA 93106 Introduction Results The University of California, Santa Barbara (UCSB) Natural History Museum at the Cheadle Center As of October 2017, the database has a total of 1,432 specimens. We are georeferencing the Where the U.S. Diptera Specimens Came From for Biodiversity and Ecological Restoration (CCBER) has formed an Invertebrate Zoology Collection specimens, with almost 900 completed (Table 1). Databasing of the Diptera is complete and our 0.15% 0.15% 0.15% Arizona from 10,000 specimens rediscovered in a basement on campus. Since its discovery, this collection entire Diptera collection of currently 715 specimens (35 families and 33 genera) has been 6.02% 3.82% has grown rapidly through coastal California arthropod survey efforts, donated student collections, transcribed and georeferenced. Determination to family for the Acalyptratae is ongoing. Currently California and faculty research projects (Fig. 2). These surveys, conducted by CCBER for conservation and in the SCAN data portal there are 326 Diptera specimens (14 families and 24 genera) from coastal Michigan restoration monitoring, are hugely valuable as the coastal regions of Santa Barbara and Ventura Santa Barbara and Ventura counties.
    [Show full text]
  • On Adult Size and Male Mating Success in the Seaweed Fly, Coelopa Frigida A
    Heredity (1982), 49 (1),51—62 0018-067X/82/0507005 1$02.OO 1982.The Genetical Society of Great Britain THEEFFECTS OF A CHROMOSOMAL INVERSION ON ADULT SIZE AND MALE MATING SUCCESS IN THE SEAWEED FLY, COELOPA FRIGIDA A. K. BUTLIN, I. L. READ and 1. H. DAY Department of Genetics, University of Nottingham, University Park, Nottingham, NG72RD Received4.iii.82 SUMMARY An association is reported between the a//3inversionpolymorphism on chromo- some I and adult size as assessed by the length of wings. aa flies are larger than (3/3 flies, with heterokaryotypes intermediate, and the differences are more marked in males than in females. Laboratory mating experiments were perfor- med in which a single female was given a choice of two males. By examining the genotypes of the progeny larvae, it is shown that the larger male is successful in a significantly greater proportion of trials than the smaller one. This mating success is dependent on the size difference between the males and on the female size. Together these observations suggest an indirect influence of the inversion on male mating success. The possible relevance of this effect to the maintenance of the inversion polymorphism in natural populations is discussed. 1. INTRODUCTION MANY species of insects are polymorphic for chromosomal inversions. The most extensive studies of these polymorphisms have been in various species of Drosophila (da Cunha, 1955) especially D.pseudoobscura(Dobzhansky, 1971), D. persimilis (Spiess and Spiess, 1969; Yu and Spiess, 1978) and D. subobscura (Krimbas and Loukas, 1979). It is clear from the Drosophila work that there exists a multitude of selection pressures that may influence the frequencies of inversions in natural populations.
    [Show full text]
  • Advances in Deciphering the Genetic Basis of Insect Cuticular Hydrocarbon Biosynthesis and Variation
    Heredity (2021) 126:219–234 https://doi.org/10.1038/s41437-020-00380-y REVIEW ARTICLE Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation 1 1 1,2 Henrietta Holze ● Lukas Schrader ● Jan Buellesbach Received: 6 July 2020 / Revised: 8 October 2020 / Accepted: 9 October 2020 / Published online: 2 November 2020 © The Author(s) 2020. This article is published with open access Abstract Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic 1234567890();,: 1234567890();,: boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation.
    [Show full text]
  • Coleoptera: Staphylinidae: Genus Aleochara) from Japan
    Zootaxa 3517: 1–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F832C768-A8CA-4FEE-8C3B-BD933247FA6E Revision of the Seashore-dwelling Subgenera Emplenota Casey and Triochara Bernhauer (Coleoptera: Staphylinidae: genus Aleochara) from Japan SHÛHEI YAMAMOTO1, 2 & MUNETOSHI MARUYAMA2, 3 1Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan E-mail: [email protected] 2The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan 3Correspoding author: E-mail: [email protected] Abstract The Japanese species of the seashore-dwelling subgenera Emplenota Casey and Triochara Bernhauer of the genus Aleochara Gravenhorst are revised. Five species are recognised in Emplenota, of which three are described as new species: Aleochara (Emplenota) segregata n. sp., A. (E.) hayamai n. sp. and A. (E.) yamato n. sp. The remaining known species A. (E.) fucicola Sharp and A. (E.) puetzi (Assing) are redescribed. Three species recognised in Triochara, Aleochara (Triochara) trisulcata Weise, A. (T.) zerchei (Assing) and A. (T.) nubis (Assing) are redescribed. All species are keyed. For some species ecological data are reported. The phylogenetic relationships of the Japanese species are discussed, and the distributions of all species are mapped. Key words: biodiversity, coastal environment, identification key, Palaearctic, redescription, supratidal zones, sympatric species, taxonomy Introduction Recent studies have revealed the worldwide coastal staphylinid diversity (Moore & Legner, 1976; Hammond, 2000; Frank & Ahn, 2011), and the subfamily Aleocharinae is represented by 187 species throughout the world, representing the largest number of coastal staphylinid beetles (Frank & Ahn, 2011).
    [Show full text]
  • Behavioural, Ecological, and Genetic Determinants of Mating and Gene
    Thesis committee Thesis supervisor Prof. dr. Marcel Dicke Professor of Entomology, Wageningen University Thesis co-supervisor Dr. Ir. Bart G.J. Knols Medical Entomologist, University of Amsterdam Other members Prof. dr. B.J. Zwaan, Wageningen University Prof. dr. P. Kager, University of Amsterdam Dr. Ir. P. Bijma, Wageningen University Dr. Ir. I.M.A. Heitkonig, Wageningen University This research was conducted under the auspices of the C. T. de Wit Graduate School for Production Ecology and Resource Conservation Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes Kija R.N. Ng’habi Thesis Submitted in fulfillment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis committee appointed by the Academic Board to be defended in public at on Monday 25 October 2010 at 11:00 a.m. in the Aula. Kija R.N. Ng’habi (2010) Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes PhD thesis, Wageningen University – with references – with summaries in Dutch and English ISBN – 978-90-8585-766-2 > Abstract Malaria is still a leading threat to the survival of young children and pregnant women, especially in the African region. The ongoing battle against malaria has been hampered by the emergence of drug and insecticide resistance amongst parasites and vectors, re- spectively. The Sterile Insect Technique (SIT) and genetically modified mosquitoes (GM) are new proposed vector control approaches. Successful implementation of these ap- proaches requires a better understanding of male mating biology of target mosquito species.
    [Show full text]
  • INSECTS of MICRONESIA Diptera: Coelopidae (Phycodromidaey
    INSECTS OF MICRONESIA Diptera: Coelopidae (PhycodromidaeY By D. ELMO HARDY UNIVERSITY OF HAWAII AGRICULTURAL EXPERIMENT STATION This is the first report of the occurrence of the family Coelopidae in the Pacific region other than the subarctic, subantarctic, and New Zealand areas. The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bishop Museum have made this survey and the publication of the results possible. Field research was aided by a contract between the Office of Naval Research, Department of the Navy, and the National Academy of Sciences, NR 160-175. The drawings were prepared by Marian S. Adachi, University of Hawaii. The coelopids are moderate-sized, conspicuously hairy flies which breed in kelp, and perhaps in other seaweed, washed up on the shore. The adults can be collected in large numbers by sweeping seaweed along the beaches. The group is almost restricted in distribution to cold and temperate regions of the world. Aldrich (1929, U. S. Nat. Mus., Proc. 76: 1) writing of North Amer­ ican species of Coe1opa s. 1. says "... all of the spp. appear to breed in the kelps and are found only on seashores where seaweeds of this group are washed up." The discovery of a species in the western Caroline Islands greatly extends the known range of the family. The members of this family, as defined by Hendel [1928, Tierwelt Deutsch­ lands 11 (2) : 89], are characterized by having the prelabrum produced; the genae swollen (bulging); the body depressed, the postvertical bristles well developed and convergent; the tibiae with preapical dorsal bristles, the median pair crossed; the subcostal vein complete, and the costa not broken.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]