Rich Groundwater in the Eastern and Mogwase Regions of the Northern and North - West Provinces
Total Page:16
File Type:pdf, Size:1020Kb
M DISTRIBUTION OF FLUORIDE - RICH GROUNDWATER IN THE EASTERN AND MOGWASE REGIONS OF THE NORTHERN AND NORTH - WEST PROVINCES LP McCaffrey • JP Willis WRC Report No 526/1/01 Disclaimer This report emanates from a project financed by the Water Research Commission (WRC) and is approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC or the members of the project steering committee, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Vrywaring Hierdie verslag spruit voort uit 'n navorsingsprojek wat deur die Waternavorsingskommissie (WNK) gefinansier is en goedgekeur is vir publikasie. Goedkeuring beteken nie noodwendig dat die inhoud die siening en beleid van die WNK of die lede van die projek-loodskomitee weerspiee'J nie, of dat melding van handelsname of -ware deur die WNK vir gebruik goedgekeur of aanbeveel word nie. DISTRIBUTION OF FLUORIDE-RICH GROUND WATER IN THE EASTERN AND MOGWASE REGIONS OF THE NORTHERN AND NORTH-WEST PROVINCES by L p MCCAFFREY and j p WILLIS Department of Geological Sciences University of Cape Town Rondebosch 7700, South Africa Report to the Water Research Commission on the Project 'Distribution of fluoride-rich ground water in the eastern and Mogwase regions of the Northern and North-western Provinces: influence of bedrock and soils and constraints on utilisable drinking water supplies" Head of Department: Professor A P le Roex Project Leader: Professor J P Willis WRC Report No. 526/1/01 ISBN 186845 694 3 TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1 Background and motivation to the study 2 1.1 Distribution and causes of high F" groundwater 2 2 Aims of the study 3 3 Field area 4 4 Geochemistry of Fluorine 7 5 Materials and Methods 8 5.1 Groundwater 8 5.2 Rocks and soils 9 5.3 Computer manipulation of spatial data 10 6 Main results 11 6.1 Fluorine in rocks and soils 11 6.2 Groundwater chemistry 13 6.2.1 Anions 15 6.2.2 Trace elements 15 6.2.3 Temporal variation 15 6.2.4 General 15 7 Conclusions 16 8 Recommendations 16 ACKNOWLEDGMENTS i ABBREVIATIONS AND DEFINITIONS iii 1 INTRODUCTION 1.1 1.1 Purpose of this study 1.1 1.2 Structure of this report 1.3 1.3 Field area 1.3 1.3.1 Extent 1.3 1.3.2 Geography 1.3 1.3.3 Geology 1.5 1.3.3.1 Lithology 1.6 1.3.3.2 Structure 1.6 1.3.4 Meteorology 1.7 1.3.5 Hydrology 1.9 1.3.6 Geohydrology 1.9 1.4 Isotope Hydrogeochemistry 1.12 1.4.1 Introduction 1.12 1.4.1.1 Stable Isotopes of oxygen and hydrogen 1.13 1.4.1.2 Strontium isotopes 1.14 1.4.1.3 Radiocarbon 1.16 1.5 Workshop On Fluoride and Fluorosis 1.17 2 MATERIALS AND METHODS 2.1 2.1 Groundwater 2.1 -l- 2.1.1 Sampling and field tests 2.1 2.1.1.1 Sampling protocol 2.1 2.1.1.2 Field tests 2.1 2.1.2 Sample preparation 2.2 2.1.2.1 High Pressure Ion Chromatography (HPIC) 2.2 2.1.2.2 Fluoride ion selective electrode 2.2 2.1.2.3 Iodide 2.2 2.1.2.4 Stable isotopes 2.2 2.1.2.5 Radiocarbon 2.2 2.1.2.6 Strontium isotopes 2.2 2.1.3 Analysis 2.3 2.1.3.1 Fluoride ion selective electrode 2.3 2.1.3.2 Major ions 2.3 2.1.3.3 Iodide 2.3 2.1.3.4 Stable isotopes 2.3 2.1.3.5 Radiocarbon 2.3 2.1.3.6 Strontium isotopes 2.5 2.2 Rock and soil 2.5 2.2.1 Sampling 2.5 2.2.2 Sample preparation 2.5 2.2.2.1 Drying 2.5 2.2.2.2 Crushing and milling 2.5 2.2.2.3 XRFS briquettes 2.6 2.2.2.4 XRF fusion disks 2.6 2.2.2.5 XRD . 2.6 2.2.2.6 Electron microprobe 2.6 2.2.2.7 Stable isotopes 2.7 2.2.3 Analysis 2.7 2.2.3.1 X-Ray Fluorescence Spectrometry (XRFS) 2.7 2.2.3.2 X-Ray Diffraction (XRD) 2.7 2.2.3.3 Carbon dioxide (CO2) 2.7 2.2.3.4 Gas-source Mass Spectrometer 2.7 2.2.3.5 Solid-Source Mass Spectrometer 2.7 2.2.3.6 Electron microprobe 2.8 2.3 Leaching experiments 2.8 2.4 Data quality 2.10 2.4.1 Groundwater Data Quality 2.10 2.4.1.1 Ionic analysis 2.10 2.4.1.2 Overall quality of water analyses 2.15 2.4.1.3 Spatial distribution of water samples 2.17 2.4.2 Rock and soil data quality 2.18 2.4.2.1 Elemental analysis 2.18 2.4.2.2 Spatial distribution of rock and soil samples 2.18 2.5 Computer manipulation of spatial data 2.18 3 GEOCHEMISTRY OF ROCKS, SOILS AND MINERALS 3.1 3.1 Introduction 3.1 3.2 Chemical composition of rock samples 3.1 3.2.1 Major element Geochemistry 3.1 -li- 3.2.1.1 Previous Work 3.1 3.2.1.2 Present work 3.1 3.2.2 Fluorine in rock and soil samples 3.7 3.2.3 Spatial distribution of F in rock and soil 3.7 3.2.4 Leaching experiments 3.8 3.3 Isotopic composition of rock samples 3.9 3.3.1 "Sr/^Sr 3.9 3.3.1.1 Previous work 3.9 3.3.1.2 This study 3.9 3.4 Mineralogy 3.10 3.4.1 Mineralogy 3.10 3.4.2 Mineral chemistry 3.10 3.4.2.1 Mica 3.10 3.4.2.2 Amphibole 3.11 3.4.2.3 Apatite 3.12 3.4.3 Fluorine-bearing mineral abundances 3.13 3.4.3.1 Mineralogy 3.13 3.4.3.2 Quantitative estimation of F minerals 3.14 3.5 Composition, origin and significance of Pilanesberg fluorite ore 3.15 3.5.1 Introduction 3.15 3.5.2 Results 3.15 3.5.3 Discussion 3.17 GROUNDWATER CHEMISTRY 4.1 4.1 Introduction 4.1 4.2 Previous work 4.2 4.3 This work 4.2 4.4 Physico-chemical parameters 4.2 4.4.1 Electrical Conductivity (EC) and Total Dissolved Solids (TDS) 4.2 4.4.2 pH 4.5 4.5 Major elements - Anions 4.5 4.5.1 Fluoride 4.5 4.5.2 Chloride 4.7 4.5.3 Nitrate 4.9 4.5.4 Sulphate 4.9 4.6 Major elements - cations 4.9 4.6.1 Sodium 4.9 4.6.2 Calcium 4.9 4.6.3 Magnesium 4.11 4.6.4 Potassium 4.11 4.7 Trace elements 4.11 4.7.1 Zinc 4.11 4.7.2 Molybdenum 4.11 4.7.3 Barium 4.11 4.7.4 Lithium 4.12 4.7.5 Lead 4.12 4.7.6 Vanadium 4.12 4.7.7 Copper 4.13 4.7.8 Arsenic 4.13 -in- 4.7.9 Chromium 4.13 4.7.10 Cobalt, Cadmium and Nickel 4.13 4.7.11 Iodide 4.14 4.7.12 Strontium 4.15 4.7.13 Aluminium 4.16 4.8 Temporal variation 4.17 4.9 Results of isotopic analyses 4.18 4.9.1 Environmental Isotopes 4.20 4.9.1.1 Oxygen (518O) 4.20 4.9.1.2 Hydrogen (62H) 4.21 4.9.2 Radiogenic Isotopes 4.21 4.9.2.1 Carbon (14C) 4.21 4.9.2.2 Strontium ("Sr/^Sr) 4.22 5 DISCUSSION 5.1 5.1 Introduction 5.1 5.2 Fluorine Geochemistry And Health 5.1 5.2.1 Geochemical behaviour of Fluorine 5.1 5.2.1.1 Natural Waters 5.1 5.2.1.2 Fluorine in minerals 5.1 5.2.1.3 Magmatic systems 5.3 5.2.1.4 Metamorphic rocks 5.4 5.2.1.5 Sedimentary rocks 5.5 5.2.1.6 Fluorine in Soils 5.6 5.2.1.6.1 Mobility in soils 5.6 5.2.1.7 Biosphere 5.7 5.2.1.8 Mineral - aqueous fluoride interaction 5.7 5.2.1.8.1 Ionic compounds of F 5.7 5.2.1.8.2 Dissolution of F-bearing alumino-silicates 5.8 5.2.1.9 Review of the base exchange process 5.9 5.2.2 Distribution and causes of high F" concentration in groundwater 5.9 5.2.2.1 Global 5.9 5.2.2.2 Africa 5.10 5.2.2.3 South Africa 5.11 5.2.2.3.1 Bushveld area 5.11 5.2.3 Fluorine and Health 5.12 5.2.3.1 Metabolism of fluoride 5.12 5.2.3.2 Dental Fluorosis 5.13 5.2.3.2.1 Symptoms 5.14 5.2.3.2.2 Dental fluorosis in the field area 5.15 5.2.3.3 Other effects of F" on the human body 5.16 5.2.3.3.1 Skeletal fluorosis 5.16 5.2.3.3.2 Goitre 5.17 5.2.3.3.3 Cancer 5.17 5.2.3.3.4 Acute fluoride poisoning 5,17 5.2.3.3.5 Risk levels and optimal fluoride concentration in drinking water 5.18 5.2.4 Fluoride concentration and fluorosis risk 5.20 5.2.4.1 Magnitude of the problem 5.20 -IV- 5.2.4.2 Distribution of risk areas 5-20 5.2.5 Bunavailability and speciation 5.20 5.2.5.1 Speciation of F inside the human body 5.23 5.2.6 Other elements 5-2^ 5.2.6.1 Aluminium 5.25 5.2.6.2 Molybdenum 5.25 5.2.6.3 Zinc 5.26 5.3 Geochemical controls of ground water fluoride concentration 5.28 5.3.1 Whole Rock composition 5.28 5.3.2 Mineral solubility 5.28 5.3.2.1 Fluorite (CaF2) 5.28 5.3.2.2 Fluorapatite and hydroxyapatite 5.29 5.3.2.3 Micas and Amphiboles 5.29 5.3.3 Fluorite dissolution kinetics 5.30 5.3.4 Thermodynamic modelling of mineral controls on groundwater composition 5.31 5.3.4.1 Lebowa Granite 5.33 5.3.4.2 Nebo Granite 5.33 5.3.4.3 Pilanesberg 5.33 5.3.4.4 Rustenburg Layered Suite 5.34 5.3.4.5 Carbonatites 5.34 5.3.4.6 Groundwater in the Pretoria Saltpan area 5.35 5.3.5 Modelling Villiaumite (NaF) solubility 5.35 5.3.5.1 Application of Villiaumite saturation index 5.37 5.3.5.2 Comparison of saturation indices calculated by MINTEQA2 and JESS 5.37 5.3.6 Aqueous chemical control 5.39 5.3.6.1 pH 5.39 5.3.6.2 CaC03 precipitation and its effect on the Ca:F ratio in groundwater 5.40 5.3.6.3 Ion Exchange 5.41 5.3.6.4 Evaporation 5.43 5.3.7 Other factors controlling F concentration in groundwater 5.44 5.3.7.1 Volcanic exhalation 5.44 5.3.7.2 Industrial emissions 5.44 5.3.7.3 Fluoride in rainwater 5.45 5.3.7.4 Dissolution of atmospheric fluorine compounds 5.45 5.3.7.5 Temporal factors 5.45 5.3.7.6 Hydrological factors 5.45 5.3.7.7 Borehole depth 5.45 5.3.7.8 Leakage of fluid inclusions 5.46 5.3.7.9 Soil 5.47 5.4 Hydrogen and Oxygen Isotopes 5.47 5.4.1 Correlation with elevation and temperature 5.47 5.4.2 Isotopic signature of rock types 5.47 5.4.3 Isotopic difference between hail and rain 5.49 5.5 Radiogenic isotopes 5.49 5.5.1 Radiocarbon - 14C 5.50 5.5.1.1 Mean Residence Time 5.50 -v- 5.5.1.2 Estimation of Co 5.51 5.5.1.3 Variation of F with residence time 5.53 5.5.1.4 Variation of other ions with residence time 5.55 5.5.2 87Sr/B6Sr isotope ratios 5.55 5.5.2.1 Rainwater Sr 5.58 5.5.2.2 Mixing of groundwaters with differing ^Sr/^Sr and Sr concentrations 5.58 6 CONCLUSIONS 6.1 6.1 Introduction 6.1 6.2 Synthesis 6.1 6.2.1 Groundwater 6.2 6.2.2 F in rock, soil and minerais 6.3 6.2.3 Origins of high F" groundwaters 6.3 6.2.4 The possible extent of fluorosis 6.5 6.3 General 6.5 7 RECOMMENDATIONS 7.1 7.1 Recommendations for further work 7.1 7.1.1 Groundwater studies 7.1 7.1.2 Analysis of rock, soil and minerals 7.1 7.1.3 Groundwater isotopes 7.1 7.1.4 Geohydrology of the western Bushveld 7.2 7.1.5 General 7.2 8 REFERENCES 8.1 9 APPENDICES 9.1 9.1 Appendix Al.