Division: Ochrophyta

Total Page:16

File Type:pdf, Size:1020Kb

Division: Ochrophyta Algal Evolution: Division: Ochrophyta Or 3.9 bya = Cyanobacteria appear and introduce photosynthesis (Heterokontophyta, Chromophyta, Phaeophyta) 2.5 bya = Eukaryotes appeared (nuclear envelope and ER thought to come from invagination of plasma membrane) 1.6 bya = Multicellular algae -Rhodophyta (Red algae) &Chlorophyta (Green algae) 900 mya= Dinoflagellates & Invertebrates appear 490 mya = Phaeophyceae (Brown algae) & land plants & coralline algae & crustaceans & mulluscs 408mya= Insects & Fish 362 mya = Coccolithophores & Amphibians & Reptiles ~ 16,999 species 99% marine 290mya- Gymnosperms 145 mya = Diatoms & Angiosperms DOMAIN Groups (Kingdom) DOMAIN Groups (Kingdom) 1.Bacteria- cyanobacteria (blue green algae) 1.Bacteria- cyanobacteria (blue green algae) 2.Archae 2.Archae “Algae” 3.Eukaryotes 3.Eukaryotes 1. Alveolates- dinoflagellates, coccolithophore 1. Alveolates- dinoflagellates Chromista 2. Stramenopiles- diatoms, ochrophyta 2. Stramenopiles- diatoms, ochrophyta 3. Rhizaria- unicellular amoeboids 3. Rhizaria- unicellular amoeboids 4. Excavates- unicellular flagellates 4. Excavates- unicellular flagellates 5. Plantae- rhodophyta, chlorophyta, seagrasses 5. Plantae- rhodophyta, chlorophyta, seagrasses 6. Amoebozoans- slimemolds 6. Amoebozoans- slimemolds 7. Fungi- heterotrophs with extracellular digestion 7. Fungi- heterotrophs with extracellular digestion 8. Choanoflagellates- unicellular 8. Choanoflagellates- unicellular 9. Animals- multicellular heterotrophs 3 9. Animals- multicellular heterotrophs 4 1 DOMAIN Eukaryotes DOMAIN Eukaryotes Chromista = 17,500 spp. chloroplasts derived from red algae Chromista = 17,500 spp. chloroplasts derived from red algae contains Alveolates & Stramenopiles according to Algaebase contains Alveolates & Stramenopiles according to Algaebase Group Stramenopiles- 13,500 spp two unequal flagella, chloroplasts 4 Group Stramenopiles- 13,500 spp two unequal flagella, chloroplasts 4 membranes membranes Division Ochrophyta- 13, 235 spp. - many classes unicellular Division Ochrophyta- 13, 235 spp. diatoms & brown algae • class: Aurearenophyceae- 32 • class: Bacillariophyceae- 9657 pennate diatoms Class Phaeophyceae- 2059 spp. of brown algae • class: Bolidophyceae-14 Class Bacillariophyceae- 9659 spp. of pennate diatoms • class: Chrysophyceae- 595 Class Coscinodiscophyceae- 2199 spp. of centric diatoms • class: Coscinodiscophyceae- 2199 centric diatoms • class: Dictyochophyceae- 106 • class: Eustigmatophyceae- 36 • class: Fragilariophyceae-785 • class: Pelagophyceae- 16 • class: Phaeophyceae-2059 brown algae • class: Picophagophyceae-4 • class: Placidiophyceae-2 • class: Raphidophyceae- 28 • class: Synurophyceae- 314 5 6 • class: Xanthophyceae- 557 Algal taxonomy Ochrophyta Characteristics: Hierarchical system of classification: 1) Pigments? Level: suffix: example: Domain Eukaryota Group Chromista 2) Chloroplast structure? Division -phyta Ochrophyta Class -ppyhyceae Phaeoppyhyceae Order -ales Laminariales Family -aceae Lessoniaceae Genus Egregia 3) Storage product? species menziesii 4) Flagella? 2 2 Phaeophyceae Storage Products: Seawater is hypotonic (less saline) than most algal cells •laminaran and mannitol are most abundant Phaeophyceae Storage Products : •Always sugars, never starch •Storage products found in pyrenoids Mannitol function •important in osmoregulation- algae make more mannitol to use up ions-> algal salinity decreases •transporting organic material to different parts of the thallus in large species •lowers freezing point 4 Phaeophyceae Flagella: Phaeophyceae Metabolites: Heterokont flagella: Tannins - polyphenolic compounds Anterior “flimmer flagellum” Terpenes -aromatic hydrocarbons •used for movement • long flagellum with two rows of - Anti-endophyte, -epiphyte, and anti-herbivory stiff hairs (“mastigoneme”) •directed forward -Stored in special vesicles called physodes in the cytoplasm Posterior “whiplash flagellum” -May streng th cell walls by int eracti ng with alg ina tes •used for steering • short, smooth flagellum -Block UVB protecting algae from radiation damage •directed backward • contains flavin which functions as a photoreceptor • an eyespot acts a shading structure or light reflector Flagella attached laterally not apically 5 4 3 Phaeophyceae Thallus Morphology: Phaeophyceae Morphology of Cell Walls - Advanced forms: complex multicellular thalli - Not unicellular (except gametes and spores) Two main components: - Simplest forms are branching filaments 1. Cellulose microfibrils (1-10% of thallus dry weight) - More complex forms are parenchymatous and pseudoparenchymatous Function: structural support - Differentiation of cortex (outer pigmented cells) and medulla (inner non-pigmented cells) - Medullary cells primarily for storage or transport 2. Alginic acid surrounds the microfibrills (35% of thallus dry weight) - Some browns quite large over 40 meters long Function: elasticity; flexibility; prevent desiccation; and osmoregulation (ion exchange) 6 7 Phaeophyceae Alginates: Phaeophyceae Alginates: Alginates = salt form of alginic acid; primarily in intercellular matrix Human uses for alginates -Ice-cream prevents ice crystal formation •Alginates = Alginic acid + an Ion -Frosting water retaining properties; prevent drying • Details of how alginates are used in helping ion -Paints emulsifyygging agent; keep ppgs pigments susp ended and exchange are not well underst ood . prevents brush streaking • One proposed mechanism is that preferentially using -Pharmaceuticals some ions and not others helps to balance overall ion - Food “kombu” in Japan; dried and shredded laminarians levels. • Common ions that are used to make alginates are Ca, Na and Mg 8 8 4 Algal life histories : Terminology Phaeophyceae Reproduction: Gametangia = structure where gametes are formed Sporophyte: diploid, 2n, multicellular release spores Sporangia = structure where spores are formed Sporangia = structure where spores are formed Spore (mitospore, meiospore): unicellular, must settle & grow, product of mitosis(Mt) or meiosis (Me) Gametophyte: hapliod, 1n, multicellular release gametes uniseriate multiseriate Gametangia = structure where gametes are formed Unilocular = all spores/gametes Plurilocular = divided into are produced in a single compartment many small chambers Gamete: unicellular, must fuse or die, product of mitosis(Mt) or (locules); one spore/gamete meiosis (Me) “unangia” per chamber “plurangia” 10 Phaeophyceae Reproduction: Phaeophyceae Reproduction: Functional Anisogamy = Functional Anisogamy = look the same but have different behaviors look the same but have different behaviors How do the male gametes find the female ones? female gamete male gamete Pheromones = chemicals produced to elicit a specific behavioral or physiological response from another individual. Many Phaeophyceans produce sexual pheromones, all are chemically similar (unsaturated hydrocarbons). Similarity high cross-reactivity Male gametes are VERY sensitive to pheromones: very low concentration will elicit a response 11 12 5 Division: Ochrophyta- 16,999 species Phaeophyceae habitat: Class: Phaeophyceae – 2,060 species • Mostly marine (or at least brackish water) Order: 19 orders but we will focus on 6 • Intertidal and subtidal 1. Fucales -591 species 2. Ectocarpales-787 species • Dominate colder waters 3. Dictyotales- 272 species Northern hemisphere: 4. Ralfsiales- 35 species # of red species > # of brown species 5. Desmerestales- 29 species 6. Laminariales- 148 species # of red individuals << # of brown individuals Browns are less diverse but more abundant 13 14 Distinguishing among orders based on Division: Ochrophyta- 16,999 species 1. Life History and Reproduction • Isomorphic/heteromorphic alt. of gen.; diplontic Class: Phaeophyceae – 2,060 species • Isogamous, anisogamous, oogamous Order: 19 orders but we will focus on 6 2. Macrothallus Construction: 1. Fucales -591 species •Filamentous - Usually saxicolous • Parenchymatous •Pseudoppymarenchymatous - Unattached in some cases -Unilllocular gametangia 3. Growth Genus: Fucus • Diffuse •Apical Silvetia •Intercalary Pelvetiopsis • Trichothallic • Meristodermal-a surface layer of cells (epidermis) that is Sargassum capable of dividing (is meristematic) Stephanocystis 15 14 6 Life History of Fucales Diplontic: 2N thallus, the gametes are the only Order: Fucales haploid stage 1. Life History and Reproduction 2. Macrothallus Construction: 3. Growth 25 26 Receptacle Monoecious- having the male & female - swollen tips of fucoids where meiosis occurs reproductive structure borne on - terminal portion of a branch bearing numerous the same individual plants embedded conceptacles -one house Dioecious- having the male & female reproductive structure borne on separate individual plants; said of the species Conceptacles -two houses - chambers where the gametes are stored 27 28 7 Conceptacles Fucus Silvetia Pelvetiopsis Mid Mid- high High Oogonia- female reproductive cell containing one or more egg (gamete) Midrib Playdough stipe Flattened stipe Antheridia- a male reproductive structure producing motile male gametes 1 egg per 29 8 eggs per oogonium 2 eggs per oogonium oogonium30 Sargassum: Sargassum Sargasso Sea in the Atlantic Stephanocystis =Unattached Sargassum spp rafts 31 32 8 Pneumatocysts- Division: Ochrophyta- 16,999 species -a large float containing gas found in Ochrophyta Class: Phaeophyceae – 2,060 species -provide buoyancy to lift the blades toward the surface, allowing them to receive more sunlight for Ps Order: 19 orders but we will focus on 6 -
Recommended publications
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • Fucus Vesiculosus Populations?
    l MARINE ECOLOGY PROGRESS SERIES Vol. 133: 191-201.1996 Published March 28 1 Mar Ecol Prog Ser Are neighbours harmful or helpful in Fucus vesiculosus populations? Joel C. Creed*,T. A. Norton, Joanna M. Kain (Jones) Port Erin Marine Laboratory, Port Erin. Isle of Man IM9 6JA, United Kingdom ABSTRACT: In order to investigate the effect of density on Fucus vesjculosus L. at all stages of its development, 2 experiments were carried out. A culture study in the laboratory found that increased density resulted in depressed growth and a negatively skewed population structure during the first month in the lives of freshly settled germlings. Intraspecific competition acts even at this early stage, and the limiting factor was probably nutrients. 'Two-sided' ('resource depletion') competition and an early scramble phase of growth may explain negative skewness in plant sizes. On the shore experi- mental thinning by reduction of the canopy resulted in increased macrorecruitment (apparent density) from a bank of microscopic plants which must have been present for some time. With increased thinning more macrorecruits loined the remaining plants, making population size structures highly posit~velyskewed. Thinning had no effect on reproduction In terms of the portion of biomass as repro- ductive tissue. Manipulative weedlng allows an assessment of the potent~alspore bank in seasonally reproductive seaweeds and revealed that there are always replacement plants in reserve to compen- sate for canopy losses. In E vesiculosus the performance of individuals early on is crucial to their sub- sequent survival to reproductive stage, as neighbours are generally competitively harmful. However, a failure to 'win' early on may not necessarily result in the ending of a small plant's life - the 'seed' bank still offers the individual a slim chance of survival and protects the population from harmful stochastic events KEY WORDS: Culture .
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • Lecture21 Stramenopiles-Phaeophyceae.Pptx
    Stramenopiles IV (Ch. 14):! Phaeophyceae or Brown Algae" PHAEOPHYCEAE" •250 genera and +1500 spp" •Seaweeds: large, complex thalli (kelp); some filaments (no unicells or colonies)" •Almost all are marine (@ 5 FW genera)" •Chlorophylls a & c, #-carotene, fucoxanthin & violaxanthin " •PER " •Physodes (tannins = phenols)" •Walls: cellulose fibers with alginic acid (alginate)" •Storage products are:" • laminarin (#-1,3 glucan), " • mannitol (sap & “antifreeze”)" • lipids" •Flagella: Heterokont, of course!" •Fucans or fucoidins are sulfated sugars" How these algae grow?" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" • Single: Sphacelariales, Dictyotales, Fucales" • Marginal: Dictyotales" Dictyota! Padina! Sphacelaria! Fucus! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" Desmarestia! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" 3. Intercalary: Laminariales" Laminaria! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1.
    [Show full text]
  • Terpenes and Sterols Composition of Marine Brown Algae Padina Pavonica (Dictyotales) and Hormophysa Triquetra (Fucales)
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4); 894-900 ISSN: 0975-4873 Research Article Terpenes and Sterols Composition of Marine Brown Algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) *Gihan A. El Shoubaky, Essam A. Salem Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt Available Online: 22nd November, 2014 ABSTRACT In this study the terpenes and sterols composition were identified and estimated qualitatively and quantitatively from the brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) by using GC/MS (Gas Chromatography- Mass Spectrum). Significant differences were found in the terpenes and sterols composition of the selected algae. The analysis revealed the presence of 19 terpenes in Padina pavonica and 20 terpenes in Hormophysa triquetra, in addition to 5 sterols recoded in both of them.The total concentration of terpenes in Hormophysa triquetra recorded the highest percentage than Padina pavonica. In contrast, Padina pavonica registered high content of sterols than those in Hormophysa triquetra. The main terpene component was the hemiterpene 3-Furoic acid recording in Hormophysa triquetra more than in Padina pavonica. The diterpene phytol compound occupied the second rank according to their concentration percentage in both of the studied species. Hormophysa triquetra characterized by alkylbenzene derivatives more than Padina pavonica.Fucosterolwas the major sterol component in both of the selected algae recording a convergent concentration in Padina pavonica and Hormophysa triquetra. β- Sitosterol was detected only in Padina pavonica whereas β–Sitostanol and Stigmasterol were characterized in Hormophysa triquetra. Campesterol was found in the two studied species.
    [Show full text]
  • Centers of Endemism of Freshwater Protists Deviate from Pattern of Taxon Richness on a Continental Scale Jana L
    www.nature.com/scientificreports OPEN Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale Jana L. Olefeld1, Christina Bock1, Manfred Jensen1, Janina C. Vogt2, Guido Sieber1, Dirk Albach2 & Jens Boenigk1* Here, we analyzed patterns of taxon richness and endemism of freshwater protists in Europe. Even though the signifcance of physicochemical parameters but also of geographic constraints for protist distribution is documented, it remains unclear where regional areas of high protist diversity are located and whether areas of high taxon richness harbor a high proportion of endemics. Further, patterns may be universal for protists or deviate between taxonomic groups. Based on amplicon sequencing campaigns targeting the SSU and ITS region of the rDNA we address these patterns at two diferent levels of phylogenetic resolution. Our analyses demonstrate that protists have restricted geographical distribution areas. For many taxonomic groups the regions of high taxon richness deviate from those having a high proportion of putative endemics. In particular, the diversity of high mountain lakes as azonal habitats deviated from surrounding lowlands, i.e. many taxa were found exclusively in high mountain lakes and several putatively endemic taxa occurred in mountain regions like the Alps, the Pyrenees or the Massif Central. Beyond that, taxonomic groups showed a pronounced accumulation of putative endemics in distinct regions, e.g. Dinophyceae along the Baltic Sea coastline, and Chrysophyceae in Scandinavia. Many other groups did not have pronounced areas of increased endemism but geographically restricted taxa were found across Europe. Restricted distribution and endemism has been demonstrated for numerous protist taxa by now 1–4.
    [Show full text]
  • Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2012 Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP. Emily R. Lyczkowski Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Lyczkowski, Emily R., "Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP." (2012). Electronic Theses and Dissertations. 1861. http://digitalcommons.library.umaine.edu/etd/1861 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSING ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski B.A. Colby College, 2008 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) The Graduate School The University of Maine December, 2012 Advisory Committee: Lee Karp-Boss, Associate Research Professor of Marine Sciences, Advisor Mary-Jane Perry, Professor of Marine Sciences David Townsend, Professor of Oceanography Mark Wells, Professor of Marine Sciences i ASSESSMENT OF ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski Thesis Advisor: Dr. Lee Karp-Boss An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) December, 2012 Production of allelopathic chemicals by the toxic dinoflagellate Alexandrium fundyense is one suggested mechanism by which this relatively slow grower outcompetes other phytoplankton, particularly diatoms. Despite well documented allelopathic potential of Alexandrium spp., the potency is variable.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Taxonomic and Molecular Phylogenetic Studies in The
    Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) [an abstract of Title dissertation and a summary of dissertation review] Author(s) Santiañez, Wilfred John Eria Citation 北海道大学. 博士(理学) 甲第13137号 Issue Date 2018-03-22 Doc URL http://hdl.handle.net/2115/70024 Rights(URL) https://creativecommons.org/licenses/by-nc-sa/4.0/ Type theses (doctoral - abstract and summary of review) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information Wilfred_John_Eria_Santiañez_abstract.pdf (論文内容の要旨) Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Abstract of Doctoral Dissertation Degree requested Doctor of Science Applicant’s name Wilfred John Eria Santiañez Title of Doctoral Dissertation Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) 【カヤモノリ科(褐藻綱シオミドロ目)の分類学的および分子系統学的研究】 The systematics of the brown algal family Scytosiphonaceae poses an interesting question due to the inconsistencies between the taxonomies and molecular phylogenies of its members. The complexity of the Scytosiphonaceae is also highlighted in the discovery of several new species possessing morphological characters that were intermediate to at least two genera, consequently blurring generic boundaries. As such, it has been widely accepted that traditional characters used to define genera in the family (e.g., thallus morphology, thallus construction, and shape and nature of plurangial sori) were unreliable. In this study, I attempted to resolve some of the glaring problems in the taxonomy and molecular phylogeny of several genera in the Scytosiphonaceae by integrating information on their morphologies, molecular phylogenies, and life histories. I focused my studies on the relatively under-examined representatives from tropical to subtropical regions of the Indo-Pacific as most studies have been conducted on the subtropical to temperate members of the family.
    [Show full text]