Small Grants for Building Research Capacity Among Tanzanian and Kenyan Students

Total Page:16

File Type:pdf, Size:1020Kb

Small Grants for Building Research Capacity Among Tanzanian and Kenyan Students CEPF FINAL PROJECT COMPLETION REPORT I. BASIC DATA Organization Legal Name: BirdLife International Project Title (as stated in the grant agreement): Small Grants for Building Research Capacity among Tanzanian and Kenyan Students Implementation Partners for this Project: BirdLife International – African Partnership Secretariat, Nature Kenya, Wildlife Conservation Society of Tanzania Project Dates (as stated in the grant agreement): September 1, 2006 - June 30, 2009 Date of Report (month/year): 31 July 2009 II. OPENING REMARKS Provide any opening remarks that may assist in the review of this report. Acceleration in environmental and habitat degradation, habitat and biodiversity loss, over-exploitation of resources and loss of species are some of the threats facing biodiversity conservation. Concerted efforts are being put in place to overcome these threats through: site protection, site management, invasive species control, species recovery, captive breeding, reintroduction, national legislation, habitat restoration, habitat protection and awareness-raising and communication. However, lack of sufficient biological knowledge, shortfalls in funding, and lack of sufficient capacity still pose a major challenge. This project was developed to fill gaps in biological knowledge while at the same time developing the capacity of a cadre of research scientists. When the Critical Ecosystem Partnership Fund (CEPF) launched its 5-year conservation programme in the Eastern Arc Mountains and Coastal Forests of Kenya and Tanzania (EACF), the focus was to address most of these thematic areas. These included improving biological knowledge in the hotspot through research, monitoring, education and awareness raising, integrating and engaging local populations into biodiversity conservation and livelihood initiatives and building the capacity through small scale efforts to increase biological knowledge of the sites and efforts to conserve Critically Endangered Species in the hotspot and connectivity of biologically important patches. This particular project focused on building the research capacity of Tanzanian and Kenyan students, by funding postgraduate research within the EACF, a world-renowned biodiversity hotspot, home to 333 globally threatened species. This was part of CEPF’s 1 US$ 7 million investment in the conservation of the EACF. This mostly came from the early realization that student researchers were not being adequately represented among the CEPF grantees. Yet in most of the developing countries, government allocation to research and academic institutions is still below average making it difficult for students to secure funding to finish their thesis work. In view of this, US$ 200,000 was set aside for Kenyan and Tanzanian postgraduate student research in the EACF. This programme was launched in the last quarter of 2006 with a purpose of ensuring that a comprehensive and complementary suite of small grant projects is in place to address connectivity issues, biological knowledge of sites and the conservation of threatened species. III. ACHIEVEMENT OF PROJECT PURPOSE Project Purpose: Targeted efforts to increase connectivity, biological knowledge, and the conservation of thrteatened species are supported through the Small Grants Programme for student research. Planned vs. Actual Performance Indicator Actual at Completion Purpose-level: 1. At least 16 Small Grants supported by 2007. In total 26 small grants were awarded by the end of June 2009, at an average of $6118 each and ranging from $400 to $9389 in size. 2. At least 10 projects show demonstrable impacts Out of the 26 funded small projects, five (5) on connectivity and biological knowledge by 2008. projects contributed knowledge necessary towards efforts to increase connectivity, 12 contributed to the biological knowledge of particular species (including mollusks , plants, birds, mammals, reptiles and amphibians), 10 site-focused studies contributed new knowledge about the sites, and seven (7) addressed other knowledge issues mainly on livelihoods, ecosystem services and climate change. A total of 32 KBAs in the EACF were covered by the studies. Describe the success of the project in terms of achieving its intended impact objective and performance indicators. Firstly, the profile raised for the project led to attraction of a high number (68) of good quality proposals covering aspects of forest connectivity, biological knowledge of threatened species, in addition to community livelihoods, ecosystem services and climate change. A thorough and transparent process was used to select 26 of the proposals for funding. 2 Secondly, the project provided small grants to 26 postgraduate students, 13 from Kenya and 13 from Tanzania to who undertook relevant research in the EACF. This also enabled the individual students to complete their studies. This number of grantees exceeded the initial target of 16 students. Out of the USD160, 000 for disbursement to the various grantees, a total of USD 159, 074 (99.4%) was disbursed. Thirdly, substantial new knowledge on connectivity, key species and sites as well as livelihood and ecosystem services in the EACF was derived from the research undertaken by the 26 grantees. This is summarised in a report (Attachment 1). The outcomes of the grantee research were also profiled in a special issue of the TFCG’s Arc Journal in November 2008. Fourthly, sufficient project monitoring and evaluation measures were put in place and grantees were linked with each other and to the wider network of stakeholders. The project was constantly monitored through a well structured implementation structure consisting of the Coordination Unit and the project implementation team. The grantees were also linked to the wide network of researchers and conservationists as part of information sharing, transfer of skills and expertise. The climax of the programme was when grantees were brought together in a conference in Dar es Salaam Tanzania to share and learn from each others experiences. Proceedings from this conference (Attachment 2) were prepared and disseminated to all the participants. The project also was evaluated through a monitoring and evaluation consultancy (Attachment 3). A review of information generated both on biological knowledge and connectivity was conducted and a synthesis report compiled which showed that the impact of the project is quite significant (Attachment 1). Were there any unexpected impacts (positive or negative)? (1) Small grants were provided to 26 students, much more than the anticipated minimum of 16. (2) A network of grantees was linked to each other and to the wider network of stakeholders in the EACF (3) Scientific conference of the grantees was held, during which they shared research results among themselves and other participants (4) Even though the aspect of co-financing had not been given too much focus at the onset, it emerged that through this project, grantees were also able to mobilize additional resources. Nine (9) grantees reported to have received additional funding for their research totaling US$ 24,458 (ranging between US$ 600 and US$ 5,385). IV. PROJECT OUTPUTS Project Outputs: Planned vs. Actual Performance Indicator Actual at Completion Output 1: The EACF Co-ordination Unit The EACF Coordination Unit: (1) transparently administers the Small Grants Programme, reviewed 68 proposal submissions (and re- including transparent revewing, receipt and submissions where relevant) , including 51 received distribution of funds, issuing of contracts, local during the grant cycle and 17 others later, before an reporting and final evaluation, stakeholder amendment to this project (for extension) was awareness and reports to CEPF. withdrawn by CEPF, and (2) through leadership of BirdLife International, created awareness about the small grants, received and disbursed funds, issued contracts to all grantees, ensured reporting by all 3 grantees and led a process of evaluating the programme in terms of lessons learnt and new knowledge generated. 1.1. At least 6 CU meetings monitor the The CU normally held quarterly meetings. Between small grants for student research the start and end of this project (late 2006 to June programnme by 2007 2009), a total of 10 CU meetings were held both in Kenya and Tanzania. During these meeting, tracking implementation of the small grants for postgraduate students was always one of the main agenda items, 1.2. Materials produced for awareness of Awareness materials were produced at the start of the programme and distributed to at least the project. This was meant to raise the profile of the 20 key stakeholders project and call for proposals. Over 500 posters and cards were printed and distributed widely to persons at academic and research institutions in Kenya, Tanzania and beyond. Electronic versions of the same were posted on TFCG, Nature Kenya and BirdLife websites and circulated via email to an audience of more than 500 contacts on BirdLife’s distribution list. 1.3. At least $ 160,000 distributed to By the end of the project, a total of US$ 159,074 grantees to support Small Grant projects by had been distributed to the 26 funded projects. March 2006 1.4. At least 16 contracts issued to 25 contracts had been signed by the close of grantees by end of 2007 2008. The additional grantee whose project was approved in early 2009 signed his contract in February 2009. 1.5. At least 16 reports received from A total of 23 first progress reports, 11 second grantees by 2008 progress reports and 3 final reports had been
Recommended publications
  • The Predatory Mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) Community in Strawberry Agrocenosis
    Acta Universitatis Latviensis, Biology, 2004, Vol. 676, pp. 87–95 The predatory mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) community in strawberry agrocenosis Valentîna Petrova*, Ineta Salmane, Zigrîda Çudare Institute of Biology, University of Latvia, Miera 3, Salaspils LV-2169, Latvia *Corresponding author, E-mail: [email protected]. Abstract Altogether 37 predatory mite species from 14 families (Parasitiformes and Acariformes) were collected using leaf sampling and pit-fall trapping in strawberry fi elds (1997 - 2001). Thirty- six were recorded on strawberries for the fi rst time in Latvia. Two species, Paragarmania mali (Oud.) (Aceosejidae) and Eugamasus crassitarsis (Hal.) (Parasitidae) were new for the fauna of Latvia. The most abundant predatory mite families (species) collected from strawberry leaves were Phytoseiidae (Amblyseius cucumeris Oud., A. aurescens A.-H., A. bicaudus Wainst., A. herbarius Wainst.) and Anystidae (Anystis baccarum L.); from pit-fall traps – Parasitidae (Poecilochirus necrophori Vitz. and Parasitus lunaris Berl.), Aceosejidae (Leioseius semiscissus Berl.) and Macrochelidae (Macrocheles glaber Müll). Key words: agrocenosis, diversity, predatory mites, strawberry. Introduction Predatory mites play an important ecological role in terrestrial ecosystems and they are increasingly being used in management for biocontrol of pest mites, thrips and nematodes (Easterbrook 1992; Wright, Chambers 1994; Croft et al. 1998; Cuthbertson et al. 2003). Many of these mites have a major infl uence on nutrient cycling, as they are predators on other arthropods (Santos 1985; Karg 1993; Koehler 1999). In total, investigations of mite fauna in Latvia were made by Grube (1859), who found 28 species, Eglītis (1954) – 50 species, Kuznetsov and Petrov (1984) – 85 species, Lapiņa (1988) – 207 species, and Salmane (2001) – 247 species.
    [Show full text]
  • Risk of Exposure of a Selected Rural Population in South Poland to Allergenic Mites
    Experimental and Applied Acarology https://doi.org/10.1007/s10493-019-00355-7 Risk of exposure of a selected rural population in South Poland to allergenic mites. Part II: acarofauna of farm buildings Krzysztof Solarz1 · Celina Pająk2 Received: 5 September 2018 / Accepted: 27 February 2019 © The Author(s) 2019 Abstract Exposure to mite allergens, especially from storage and dust mites, has been recognized as a risk factor for sensitization and allergy symptoms that could develop into asthma. The aim of this study was to investigate the occurrence of mites in debris and litter from selected farm buildings of the Małopolskie province, South Poland, with particular refer- ence to allergenic and/or parasitic species as a potential risk factor of diseases among farm- ers. Sixty samples of various materials (organic dust, litter, debris and residues) from farm buildings (cowsheds, barns, chaff-cutter buildings, pigsties and poultry houses) were sub- jected to acarological examination. The samples were collected in Lachowice and Kurów (Suski district, Małopolskie). A total of 16,719 mites were isolated including specimens from the cohort Astigmatina (27 species) which comprised species considered as allergenic (e.g., Acarus siro complex, Tyrophagus putrescentiae, Lepidoglyphus destructor, Glycy- phagus domesticus, Chortoglyphus arcuatus and Gymnoglyphus longior). Species of the families Acaridae (A. siro, A. farris and A. immobilis), Glycyphagidae (G. domesticus, L. destructor and L. michaeli) and Chortoglyphidae (C. arcuatus) have been found as numeri- cally dominant among astigmatid mites. The majority of mites were found in cowsheds (approx. 32%) and in pigsties (25.9%). The remaining mites were found in barns (19.6%), chaff-cutter buildings (13.9%) and poultry houses (8.8%).
    [Show full text]
  • The Eastern Africa Coastal Forests Ecoregion
    The Eastern Africa Coastal Forests Ecoregion Strategic Framework for Conservation 2005 – 2025 Strategic Framework for Conservation (2005–2025) The Eastern Afrca Coastal Forests Ecoregon Strategc Framework for Conservaton 2005–2025 The Eastern Africa Coastal Forests Ecoregion Publshed August 2006 Editor: Kimunya Mugo Design and layout: Anthony Mwangi Cover design: Kimunya Mugo Front cover main photo: WWF-EARPO / John SALEHE Front cover other photos: WWF-UK / Brent STIRTON / Getty Images Back cover photo: WWF-EARPO / John SALEHE Photos: John Salehe, David Maingi and Neil Burgess or as credited. © Graphics (2006) WWF-EARPO. All rights reserved. The material and geographic designations in this report do not imply the expression of any opinion whatsoever on the part of WWF concerning the legal status of any country, territory or area or concerning the delimitation of its frontiers and boundaries. WWF Eastern Africa Regional Programme Office ACS Plaza, Lenana Road P.O. Box 62440-00200 Nairobi, Kenya Tel: +254 20 3877355, 3872630/1 Fax: +254 20 3877389 E-mail: [email protected] Web: www.panda.org/earpo Strategic Framework for Conservation (2005–2025) Contents Acknowledgements......................................................................................................... iv Foreword........................................................................................................................... v Lst of abbrevatons and acronyms.............................................................................. v A new approach to
    [Show full text]
  • Preface to a Special Volume of Acarological Papers in Memory of Ekaterina Alekseevna Sidorchuk (1981–2019)
    Zootaxa 4647 (1): 006–013 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4647.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D3886B92-825A-4274-9A5F-BA9B7E3E2F1B Preface to a special volume of acarological papers in memory of Ekaterina Alekseevna Sidorchuk (1981–2019) ZHI-QIANG ZHANG1, 2 1 Landcare Research, 231 Morrin Road, Auckland, New Zealand. Email: [email protected] 2 Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand The acarological and palaeontological communities lost a rising star when Dr Ekaterina Alekseevna (Katya) Sidor- chuk passed away in a tragic accident while diving in the Maldives on 20 January 2019. Katya was a good colleague of many acarologists and much-loved friend of numerous collaborators. She was a highly-valued member of the editing team of Zootaxa, serving as a subject editor for Oribatida (Acari) for several years; her excellent editorial contributions were greatly appreciated by many colleagues and friends. To honour Katya, her colleagues and friends of the acarological world dedicate here a special volume of Zootaxa in her memory. This memorial volume collects 28 papers on a variety of topics and taxa (both fossil and extant), including 11 papers on Prostigmata (Fan et al. 2019; Ghasemi-Moghadam et al. 2019; Hajiqanbar et al. 2019; Khaustov et al. 2019; Khaustov & Frolov 2019; Lindquist & Sidorchuk 2019; Porta et al. 2019; Seeman 2019; Sidorchuk et al. 2019; Xu et al. 2019; Zmudzinski et al.
    [Show full text]
  • House Dust Mites: Ecology, Biology, Prevalence, Epidemiology and Elimination Muhammad Sarwar
    Chapter House Dust Mites: Ecology, Biology, Prevalence, Epidemiology and Elimination Muhammad Sarwar Abstract House dust mites burrow cheerfully into our clothing, pillowcases, carpets, mats and furniture, and feed on human dead skin cells by breaking them into small particles for ingestion. Dust mites are most common in asthma allergens, and some people have a simple dust allergy, but others have an additional condition called atopic dermatitis, often stated to as eczema by reacting to mites with hideous itching and redness. The most common type of dust mites are Dermatophagoides farinae Hughes (American house dust mite) and Dermatophagoides pteronyssinus Trouessart (European house dust mite) of family Pyroglyphidae (Acari), which have been associated with dermatological and respiratory allergies in humans such as eczema and asthma. A typical house dust mite measures 0.2–0.3 mm and the body of mite has a striated cuticle. A mated female house dust mite can live up to 70 days and lays 60–100 eggs in the last 5 weeks of life, and an average life cycle is 65–100 days. In a 10-week life span, dust mite produces about 2000 fecal particles and an even larger number of partially digested enzyme-covered dust particles. They feed on skin flakes from animals, including humans and on some mold. Notably, mite’s gut contains potent digestive enzymes peptidase 1 that persist in their feces and are major induc- ers of allergic reactions, but its exoskeleton can also contribute this. Allergy testing by a physician can determine respiratory or dermatological symptoms to undergo allergen immunotherapy, by exposing to dust mite extracts for “training” immune system not to overreact.
    [Show full text]
  • The External Parasites of Birds: a Review
    THE EXTERNAL PARASITES OF BIRDS: A REVIEW BY ELIZABETH M. BOYD Birds may harbor a great variety and numher of ectoparasites. Among the insects are biting lice (Mallophaga), fleas (Siphonaptera), and such Diptera as hippohoscid flies (Hippohoscidae) and the very transitory mosquitoes (Culicidae) and black flies (Simuliidae), which are rarely if every caught on animals since they fly off as soon as they have completed their blood-meal. One may also find, in birds ’ nests, bugs of the hemipterous family Cimicidae, and parasitic dipterous larvae that attack nestlings. Arachnida infesting birds comprise the hard ticks (Ixodidae), soft ticks (Argasidae), and certain mites. Most ectoparasites are blood-suckers; only the Ischnocera lice and some species of mites subsist on skin components. The distribution of ectoparasites on the host varies with the parasite concerned. Some show no habitat preference while others tend to confine themselves to, or even are restricted to, definite areas on the body. A list of 198 external parasites for 2.55 species and/or subspecies of birds east of the Mississippi has been compiled by Peters (1936) from files of the Bureau of Entomology and Plant Quarantine between 1928 and 1935. Fleas and dipterous larvae were omitted from this list. According to Peters, it is possible to collect three species of lice, one or two hippoboscids, and several types of mites on a single bird. He records as many as 15 species of ectoparasites each from the Bob-white (Co&us uirginianus), Song Sparrow (Melospiza melodia), and Robin (Turdus migratorius). The lice and plumicolous mites, however, are typically the most abundant forms present on avian hosts.
    [Show full text]
  • COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY of HAWAII at MANOA Department of Botany Honolulu, Hawaii 96822 (808) 948-8218 Clifford W
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF HAWAII AT MANOA Department of Botany Honolulu, Hawaii 96822 (808) 948-8218 Clifford W. Smith, Unit Director Associate Professor of Botany Technical Report 29 MITES (CHELICERATA: ACARI) PARASITIC ON BIRDS IN HAWAII VOLCANOES NATIONAL PARK Technical Report 30 DISTRIBUTION OF MOSQUITOES (DIPTERA: CULICIDAE) ON THE EAST FLANK OF MAUNA LOA VOLCANO, HAWAI'I M. Lee Goff February 1980 UNIVERSITY OF HAWAII AT MANOA NATIONAL PARK SERVICE Contract No. CX 8000 7 0009 Contribution Nos. CPSU/UH 022/7 and CPSU/UH 022/8 MITES (CHELICERATA: ACARI) PARASITIC ON BIRDS IN HAWAII VOLCANOES NATIONAL PARK M. Lee Goff Department of Entomology B. P. Bishop Museum P. 0. Box 6037 Honolulu, Hawaii 96818 ABSTRACT The external parasites of native and exotic birds captured in Hawaii Volcanoes National Park are recorded. Forty-nine species of mites in 13 families were recovered from 10 species of birds. First records of Harpyrhynchidae are given for 'Amakihi and 'Apapane; Cytodites sp. (Cytoditidae) is recorded from the Red-b'illed Leiothrix for the first time in Hawaili. Two undescribed species of Cheyletiellidae, 1 undescribed species of Pyroglyphidae, and 19 undescribed feather mites of the super- family Analgoidea are noted. RECOMMENDATIONS Information presented in this report is primarily of a pre- liminary nature due to the incomplete state of the taxonomy of mites. This data will add to the basic knowledge of the stress placed on the bird populations within the Park. The presence of Ornithonyssus sylviarum in collections made of the House Finch provides a potential vector for viral and other diseases of birds, including various encephalides and Newcastles Disease.
    [Show full text]
  • Volume: 1 Issue: 2 Year: 2019
    Volume: 1 Issue: 2 Year: 2019 Designed by Müjdat TÖS Acarological Studies Vol 1 (2) CONTENTS Editorial Acarological Studies: A new forum for the publication of acarological works ................................................................... 51-52 Salih DOĞAN Review An overview of the XV International Congress of Acarology (XV ICA 2018) ........................................................................ 53-58 Sebahat K. OZMAN-SULLIVAN, Gregory T. SULLIVAN Articles Alternative control agents of the dried fruit mite, Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) on dried apricots ......................................................................................................................................................................................................................... 59-64 Vefa TURGU, Nabi Alper KUMRAL A species being worthy of its name: Intraspecific variations on the gnathosomal characters in topotypic heter- omorphic males of Cheylostigmaeus variatus (Acari: Stigmaeidae) ........................................................................................ 65-70 Salih DOĞAN, Sibel DOĞAN, Qing-Hai FAN Seasonal distribution and damage potential of Raoiella indica (Hirst) (Acari: Tenuipalpidae) on areca palms of Kerala, India ............................................................................................................................................................................................................... 71-83 Prabheena PRABHAKARAN, Ramani NERAVATHU Feeding impact of Cisaberoptus
    [Show full text]
  • Biology and Behavior of the Mite Cheletomorpha Lepidopterorum (Shaw) (Prostigmata:Cheyletidae) and Its Role As a Predator of a Grain Mite Acarus Farris (Oud
    AN ABSTRACT OF THE THESIS OF JAMES ROGER ALLISONfor the DOCTOR OF PHILOSOPHY (Name (Degree) in ENTOMOLOGY presented on41a21712Ajd2W;) /2.'7/ (Major) (Date) Title: BIOLOGY AND BEHAVIOR OF THE MITECHELETOMORPHA LEPIDOPTERORUM (SHAW) (PROSTIGMATA:CHEYLETIDAE) AND ITS ROLE AS A PREDATOR OF A GRAIN MITEACARUS FARRIS (OUD. )(ASTIGIV&TIAaR. Redacted for Privacy Abstract approved: /7J //I G.- W. Krantz Cheletomorpha lepidopterorum (Shaw), a predaceous, prostig- matid mite, was studied under laboratory conditions of20° - 30° C and 80% - 90% R. H. to determine its effectiveness as apossible biological control agent of Acarus farris (Oud. ),a graminivorous mite which infests stored grains and grain products.Although Cheletophyes knowltoni Beer and Dailey had been synonymized with C. lepidopterorum, it was found that the latter couldbe differentiated from C. knowltoni on the basis of biological, morphological,and behavioral data obtained from four species "populations"(Kansas, Oregon, California, and World-Wide). A temperature range of 20° - 25° C and relative humidities of 80% - 90% created conditions ideally suited to the rearing 'of C. lepidopterorum.Egg survival under optimal temperature and humidity regimes exceeded75%. Mated females laid more eggs than unmatedfemales at optimal environmental conditions. Development time from egg to adult ranged from alow of 192 hours for a single male at 30° C, 90% R. H. ,to 420 hours for a male at 20° C, 90% R. H.The second nymphal stage sometimes was omitted in the male ontogeny. Mated females produced male and female progeny,while unmated females produced a higher percentage ofmales. Starved C. lepidopterorum females survivedlongest at 20° C, 80% R. H. -- 31.
    [Show full text]
  • Redescription of Paracaropsis Travisi (Baker, 1949) (Trombidiformes: Cheyletidae), with Range Expansion, Additional Host Records
    Acarologia 54(3): 335–345 (2014) DOI: 10.1051/acarologia/20142135 REDESCRIPTION OF PARACAROPSIS TRAVISI (BAKER, 1949) (TROMBIDIFORMES: CHEYLETIDAE), WITH RANGE EXPANSION, ADDITIONAL HOST RECORDS, AND REEVALUATION OF CHEYLETID CHAETOTAXY BASED ON THE SEJUGAL FURROW Michael SKVARLA*, J. Ray FISHER and Ashley P.G. DOWLING (Received 15 April 2014; accepted 14 June 2014; published online 30 September 2014) Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, Arkansas 72701, USA. ( * Corresponding author) [email protected], jrfi[email protected], [email protected] ABSTRACT — A lectotype and paralectotype are designated for Paracaropsis travisi, which is redescribed and illustrated. Specimens are reported from additional Laphria hosts in Michigan and leaf litter in Arkansas. After comparision of Nearc- tic and Palearctic specimens, the synonymization of Paracaropsis travisi (Baker, 1949) and Paracaropsis strofi (Samšiˇnák, 1956) is upheld. We also review the Grandjean System and reevaluate idosomal setal nomenclature in Cheyletidae based on the sejugal furrow. KEYWORDS — Acari; Acariformes; Prostigmata; Cheyletoidea INTRODUCTION (1970) reillustrated Paracaropsis travisi and syn- onymized P. strofi with it without giving explicit Cheyletidae are small (generally 400-700 µm) yel- reasons. low, orange, or brown mites (Volgin 1969). More Previous authors illustrated the dorsum and than 370 species are known from 74 genera. Many gnathosoma of Paracaropsis travisi only. Improved are free-living predators in leaf litter and soil, tree illustrations of the dorsum and gnathosoma, as well bark, stored food products, and bird, mammal and as detailed illustrations of the legs and the first illus- insect nests, though some are vertebrate and inver- tration of the venter are provided. Named setae are tebrate parasites or associates (Walter et al.
    [Show full text]
  • Multi-Locus Phylogeny of African Pipits and Longclaws (Aves: Motacillidae) Highlights Taxonomic Inconsistencies
    Running head: African pipit and longclaw taxonomy Multi-locus phylogeny of African pipits and longclaws (Aves: Motacillidae) highlights taxonomic inconsistencies DARREN W. PIETERSEN,1* ANDREW E. MCKECHNIE,1,2 RAYMOND JANSEN,3 IAN T. LITTLE4 AND ARMANDA D.S. BASTOS5 1DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa 2South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa 3Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa 4Endangered Wildlife Trust, Johannesburg, South Africa 5Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa *Corresponding author. Email: [email protected] 1 Abstract The globally distributed avian family Motacillidae consists of 5–7 genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognised species, of which 32 species in four genera occur in sub- Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than what is currently (five genera and 67 species) recognised. Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognised motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub-Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large-bodied Anthus clade, and a sixth widespread genus, Motacilla.
    [Show full text]
  • A New Genus and Species of Cheyletidae (Acariformes: Prostigmata) from Citrus Trees in Florida
    Zootaxa 2796: 29–36 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A new genus and species of Cheyletidae (Acariformes: Prostigmata) from citrus trees in Florida BIN XIA1, HANS KLOMPEN2 & CARL C. CHILDERS3 1College of Life Science, Nanchang University999 Xuefu Road., New district of Honggutan, Nanchang, 330031, China. E-mail: [email protected] 2Museum of Biological Diversity, Ohio State University, 1315 Kinnear Road., Columbus, 43212, USA. E-mail: [email protected] 3retired, 6 Wood Sorrel Lane, Hendersonville, NC 28792, USA. E-mail: [email protected] Abstract A new genus and species, Lanceacheyla whartoni (Acariformes: Prostigmata: Cheyletidae) is described for the female, male, and teleonymph. All mites were collected from leaves of ‘Hamlin’ orange trees in Florida, U.S.A. Affinities of the new genus within Cheyletidae are discussed. Key words: Cheyletidae, Lanceacheyla, new genus, new species Introduction The family Cheyletidae Leach (Acariformes: Prostigmata) is quite diverse, both taxonomically and ecologically (including free living predators, parasites of vertebrates, and obligate associates of invertebrates). Volgin (1969, 1987) recognized 10 tribes and 54 genera, Summers and Price (1970) listed 50 genera and close to 190 species, and Gerson et al. (1999) listed a total of 76 genera and more than 400 species. Bochkov and Fain (2001) presented the first phylogenetic analysis of intrafamilial relationships, which largely confirmed Volgin’s classification. These authors recognized 72 valid genera for the family. Currently, the Cheyletidae includes about 370 species belonging to 73 genera (Bochkov 2004). A series of surveys and field assessments of soft pesticide programs intended to minimize pest mite popula- tions and to optimize beneficial mites on Florida citrus were conducted between 1991 and 2004 (Childers et al., unpublished data).
    [Show full text]