Exploring Functional Pairing Between Surface Glycoconjugates And

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Functional Pairing Between Surface Glycoconjugates And Exploring functional pairing between surface PNAS PLUS glycoconjugates and human galectins using programmable glycodendrimersomes Qi Xiaoa, Anna-Kristin Ludwigb, Cecilia Romanòc, Irene Buzzaccheraa,d,e,f, Samuel E. Shermana, Maria Vetroc, Sabine Vértesyb, Herbert Kaltnerb, Ellen H. Reedg, Martin Möllerd,e, Christopher J. Wilsonf, Daniel A. Hammerg,h, Stefan Oscarsonc, Michael L. Kleini,1, Hans-Joachim Gabiusb, and Virgil Perceca,1 aRoy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323; bInstitute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany; cCentre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland; dDWI − Leibniz Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany; eInstitute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany; fNovioSense B.V., 6534 AT Nijmegen, The Netherlands; gDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321; hDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104-6391; and iInstitute of Computational Molecular Science, Temple University, Philadelphia, PA 19122 Contributed by Michael L. Klein, January 4, 2018 (sent for review November 16, 2017; reviewed by Timothy J. Deming and Yoshiko Miura) Precise translation of glycan-encoded information into cellular lection process are not yet defined quantitatively. Confronted with activity depends critically on highly specific functional pairing the combination of natural glycan complexity and the result of between glycans and their human lectin counter receptors. Sulfo- evolutionary structure diversification within a lectin family, the glycolipids, such as sulfatides, are important glycolipid components ultimate experimental strategy would seem to require full glycome of the biological membranes found in the nervous and immune and lectin network analysis. systems. The optimal molecular and spatial design aspects of Although chemical control of glycoengineering of cells by insert- sulfated and nonsulfated glycans with high specificity for lectin- ing glycopolymers (14–22) into membranes was previously reported mediated bridging are unknown. To elucidate how different molec- (23, 24), to date, much research in the field of glycan−lectin CHEMISTRY ular and spatial aspects combine to ensure the high specificity of matchmaking has focused on answering the question posed decades lectin-mediated bridging, a bottom-up toolbox is devised. To this ago, namely: Are glycan molecules in search of a function (25)? end, negatively surface-charged glycodendrimersomes (GDSs), of These experiments are making us aware that our understanding of different nanoscale dimensions, containing sulfo-lactose groups are the factors governing the high specificity of pairing glycoconjugates self-assembled in buffer from a synthetic sulfatide mimic: Janus with lectins is still very limited (26, 27) despite its broad impact on ′ O glycodendrimer (JGD) containing a 3 - -sulfo-lactose headgroup. cell physiology (28). Also prepared for comparative analysis are GDSs with nonsulfated Accordingly, here we employ an approach based on model lactose, a common epitope of human membranes. These self- systems to begin to tackle this formidable problem. In essence, self- PHYSIOLOGY assembled GDSs are employed in aggregation assays with 15 galec- assembled nanovesicles having programmable surfaces presenting tins, comprising disease-related human galectins, and other natural sugar moieties are used in combination with natural and engi- and engineered variants from four families, having homodimeric, neered lectins to explore the complexity of glycan−lectin specific- heterodimeric, and chimera architectures. There are pronounced dif- ity. The nanovesicle toolbox comprises Janus glycodendrimers ferences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsive- ness to the charge of carbohydrate-derived ligand. Assays reveal Significance strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface Cells are decorated with charged and uncharged carbohydrate cross-linking. These findings demonstrate how synthetic JGD- ligands known as glycans, which are responsible for several key headgroup tailoring teamed with protein engineering and network functions, including their interactions with proteins known as assays can help explain how molecular matchmaking operates in the lectins. Here, a platform consisting of synthetic nanoscale vesi- cellular context of glycan and lectin complexity. cles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is glycodendrimers | glycolipids | aggregation employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays re- he enormous potential of glycans of cellular glycoconjugates veal the extent of cross-linking of these biomimetic nanoscale — to serve as biological messengers has spurred efforts to map vesicles presenting both anionic and neutral ligands in a bio- T — the glycome (1–4). In parallel, work with synthetic multivalent active manner with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these carbohydrates and neoglycoconjugates is revealing that topo- fundamental interactions. logical features of glycan presentation on a scaffold such as protein, lipid, or microdomain come into play when these mes- Author contributions: M.L.K., H.-J.G., and V.P. designed research; Q.X., A.-K.L., C.R., I.B., sages are “read” by endogenous receptors known as lectins (5–9). S.E.S., M.V., and E.H.R. performed research; M.V., S.V., M.M., C.J.W., D.A.H., and S.O. A similar situation likely obtains for the “readers.” This com- contributed new reagents/analytic tools; Q.X., I.B., S.E.S., H.K., S.O., M.L.K., H.-J.G., plementarity ensures that the functional pairing, which is of and V.P. analyzed data; and M.L.K., H.-J.G., and V.P. wrote the paper. broad physiological significance, especially for cell surface phe- Reviewers: T.J.D., University of California, Los Angeles; and Y.M., Kyushu University. nomena, achieves the desired specificity (10, 11). Cell adhesion The authors declare no conflict of interest. and bridging often critically depend on glycan−lectin recognition, This open access article is distributed under Creative Commons Attribution-NonCommercial- NoDerivatives License 4.0 (CC BY-NC-ND). and stringent nonpromiscuous selection occurs when forming pairs 1To whom correspondence may be addressed. Email: [email protected] or percec@sas. despite the vast diversity of glycoconjugates, as, for example, with upenn.edu. the C-type lectins and for the cell adhesion selectins (12, 13). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. However, the underlying structural parameters governing the se- 1073/pnas.1720055115/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1720055115 PNAS Latest Articles | 1of10 Downloaded by guest on September 24, 2021 (JGDs) with various sugar headgroups obtained by synthesis. JGD mental scope. These Lac and suLac-presenting GDSs mimic the design enables control of glycan presentation/density and diversity, surface of biological membranes containing natural sulfatides eventually mimicking structural and topological features encoun- and galactocerebrosides (Fig. S1A) and are formed by the tered on cell surfaces. As proof-of-principle, the nanovesicle self-assembly of sequence-defined JGDs without the need of toolbox is employed to couple with adhesion/growth-regulatory coassembly of glycolipids with phospholipids. Specifically, the galectins (Gals). GDSs (36, 37) are prepared by simple injection of JGDs in This family of lectins has been selected because of its potent buffer. The aggregation of GDSs by galectins provides the bridging activity (29–31). Structurally, the lectins are grouped most direct, simple, and convenient method to evaluate the into the three categories shown in Fig. 1A, often present as a trans-bridging by increased UV-vis turbidity (Fig. S1B). network in human tissues (32–35). In each case, i.e., the homo- The cis activity of galectins is not accessible by this simple dimer, the linker-associated heterodimer, and the chimera-type method since, unlike cell membranes, GDSs do not provide monomer capable of self-aggregation (Fig. 1A), the protein de- biosignals. sign enables nanovesicles−counterreceptor cross-linking. Since results of current research demonstrate that each family member Results and Discussion appears to have its own activity profile with emerging cases of The Lectin Toolbox. The test panel represents the three natural functional antagonism, cooperation, and redundancy, bridging types of design of human galectins, in general terms shown in Fig. activities are likely to differ and respond differently to features of 1A. In detail, it consists of a noncovalently associated homodimer ligand display. In principle, each is relevant to make functional (Gal-1; Fig. 1B), two cases of linker-connected heterodimer (Gal- pairing possible. 4inFig.1C, and Gal-8 in Fig. 1D) and the chimera-type Gal-3 To test this hypothesis and gain insights into the mutual re- (Fig. 1E). It is
Recommended publications
  • The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome
    Graduate Theses, Dissertations, and Problem Reports 2019 The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome Lindsay Faye Grose West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Beef Science Commons, Dairy Science Commons, Genetics Commons, Large or Food Animal and Equine Medicine Commons, and the Other Physiology Commons Recommended Citation Grose, Lindsay Faye, "The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome" (2019). Graduate Theses, Dissertations, and Problem Reports. 4088. https://researchrepository.wvu.edu/etd/4088 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome Lindsay Faye Grose Thesis submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Reproductive Physiology Daniel J.
    [Show full text]
  • Recognition of Microbial Glycans by Soluble Human Lectins
    Available online at www.sciencedirect.com ScienceDirect Recognition of microbial glycans by soluble human lectins 3 1 1,2 Darryl A Wesener , Amanda Dugan and Laura L Kiessling Human innate immune lectins that recognize microbial glycans implicated in the regulation of microbial colonization and can conduct microbial surveillance and thereby help prevent in protection against infection. Seminal research on the infection. Structural analysis of soluble lectins has provided acute response to bacterial infection led to the identifica- invaluable insight into how these proteins recognize their tion of secreted factors that include C-reactive protein cognate carbohydrate ligands and how this recognition gives (CRP) and mannose-binding lectin (MBL) [1,3]. Both rise to biological function. In this opinion, we cover the CRP and MBL can recognize carbohydrate antigens on structural features of lectins that allow them to mediate the surface of pathogens, including Streptococcus pneumo- microbial recognition, highlighting examples from the collectin, niae and Staphylococcus aureus and then promote comple- Reg protein, galectin, pentraxin, ficolin and intelectin families. ment-mediated opsonization and cell killing [4]. Since These analyses reveal how some lectins (e.g., human intelectin- these initial observations, other lectins have been impli- 1) can recognize glycan epitopes that are remarkably diverse, cated in microbial recognition. Like MBL some of these yet still differentiate between mammalian and microbial proteins are C-type lectins, while others are members of glycans. We additionally discuss strategies to identify lectins the ficolin, pentraxin, galectin, or intelectin families. that recognize microbial glycans and highlight tools that Many of the lectins that function in microbial surveillance facilitate these discovery efforts.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Tesis Andrea Flores UAM.Pdf
    ¿Qué somos y cómo realizaremos eso que somos? Octavio Paz, Nobel Prize of Literature 1980 “Te enterramos ayer. Ayer te enterramos. Te echamos tierra ayer. Quedaste en la tierra ayer. Estás rodeada de tierra desde ayer. Arriba y abajo y a los lados, por tus pies y por tu cabeza, está la tierra desde ayer. Te metimos en la tierra, te tapamos con tierra ayer. Perteneces a la tierra desde ayer. Ayer te enterramos en la tierra, ayer". Jaime Sabines. DEDICO ESTA TESIS A MI ABUE, POR SER MI PIEDRA DE TOQUE Y LA MUJER QUE MÁS HE ADMIRADO Cecilia Caballero Jiménez (1924 -2014) ACKNOWLEDGEMENTS To all my lab -mates in the Department of Physical and Chemical Biology (CIB) , for your company through the years. To Antonio, for your guidance. To the people at the Institute of Chemistry (UNAM), for receiving me as part of your group. To all the people in the Glycopharm Marie Curi e ITN, for your inspiration in my scientific research, I wish to have an everlasting relation with you. To my students, for your admiration and your will to never stop learning. To my best friends , scattered around the globe, I love you . To Sandy and Silvi a in particular. To my siblings, and my nephew and niece, Alan and Talia. For your presence in my life. I love you deeply. And to all that were a part of my path in the obtention of this PhD, para ustedes . OUTLINE OUTLINE List of abbreviations ..……………………………………………………... v Glosary ………..…….………………… …………………………………... vi ABSTRACT ………………………………………………………………. ix RESUMEN ………………………………………………………………... xi INTRODUCTION ……………………………… ………………………... 1 1. CELL GLYCOSYLATION …….…………..
    [Show full text]
  • Role of Galectin-3 As a Receptor for Advanced Glycosylation End Products
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 58, Suppl. 77 (2000), pp. S-31±S-39 Role of galectin-3 as a receptor for advanced glycosylation end products FLAVIA PRICCI,1 GAETANO LETO,LORENA AMADIO,CARLA IACOBINI,GIULIO ROMEO, SAMANTHA CORDONE,ROBERTO GRADINI,PAOLA BARSOTTI,FU-TONG LIU, UMBERTO DI MARIO, and GIUSEPPE PUGLIESE Department of Clinical Sciences, Division of Endocrinology, Department of Experimental Medicine and Pathology, Divisions of General Pathology and Anatomic Pathology, ªLa Sapienzaº University, Rome, Italy, and La Jolla Institute for Allergy and Immunology, San Diego, California, USA Role of galectin-3 as a receptor for advanced glycosylation end cations of the disease through several mechanisms [1]. products. The advanced glycosylation end product (AGE)- Both early sugar adducts (Amadori products) [2] and binding proteins identi®ed so far include the components of advanced glycation end products (AGEs) [3] accumulate the AGE-receptor complex p60, p90 and galectin-3, receptor for advanced glycosylation end products (RAGE), and the within tissues of humans and animals with diabetes and macrophage scavenger receptor types I and II. Galectin-3 inter- may induce injurious effects either directly [1] or through acts with ␤-galactoside residues of several cell surface and structurally distinct cell surface receptors [3, 4]; further- matrix glycoproteins through the carbohydrate recognition do- more, both early and advanced glycation reactions are main and is also capable of peptide±peptide associations medi- associated with oxidative stress [5, 6]. ated by its N-terminus domain. These structural properties enable galectin-3 to exert multiple functions, including the Among these mechanisms, the AGE/AGE-receptor- modulation of cell adhesion, the control of cell cycle, and the mediated pathway appears to play a pivotal role in modu- mRNA splicing activity.
    [Show full text]
  • The Growing Galectin Network in Colon Cancer and Clinical Relevance of Cytoplasmic Galectin-3 Reactivity
    ANTICANCER RESEARCH 33: 3053-3060 (2013) The Growing Galectin Network in Colon Cancer and Clinical Relevance of Cytoplasmic Galectin-3 Reactivity HEATHER DAWSON1, SABINE ANDRÉ2, EVA KARAMITOPOULOU1, INTI ZLOBEC1 and HANS-JOACHIM GABIUS2 1Translational Research, Institute of Pathology, University of Bern, Bern, Switzerland; 2Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany Abstract. Background/Aim: Human lectins translate sugar- (4, 5), is the basis of glycosylation response to disease encoded signals of cell surface glycoconjugates into biological processes. Beyond reflecting the impact of such factors, effects, and this is what is known for the adhesion/growth- aberrations in the glycan profile can have a functional regulatory galectins. In addition, the multifunctional members meaning, for protein parameters such as stability (6, 7), and of this group can be intracellular, binding to distinct proteins. for the interplay with tissue lectins (8, 9). Of note, the case The presence of galectins and galectin reactivity were study of how reconstitution of the tumor suppressor exemplarily studied in the present article. Materials and p16INK4a in pancreatic carcinoma cells re-programs the Methods: We combined immuno- and lectin histochemical glycophenotype and at the same time provides a suitable monitoring in colon cancer on tissue arrays. Results: effector (namely the human lectin galectin-1) to translate Intracellular presence of galectins-7 and -9 in colon cancer is this change into induction of anoikis teaches the remarkable detected, extending the previously known set of five expressed lesson of the intimate co-regulation between glycosylation lectins this tumor type. The assumed significance of and lectin expression (10-12).
    [Show full text]
  • A Hydrogel Glycoarray Platform As a Replacement for Conventional Research Tools to Study Galectin Bioactivity
    A HYDROGEL GLYCOARRAY PLATFORM AS A REPLACEMENT FOR CONVENTIONAL RESEARCH TOOLS TO STUDY GALECTIN BIOACTIVITY By INHA BAEK A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 © 2018 Inha Baek ACKNOWLEDGEMENTS I would like to thank my research advisor, Dr. Gregory Hudalla for his guidance and support over the course of this research. His assistance and suggestions were invaluable towards the progress of this research. I would also like to thank co-advisor, Dr. Benjamin Keselowsky for his helpful insights and invaluable suggestions throughout the course of this research. I would also like to thank Eric Hill for helping me with fabrication process. 3 TABLE OF CONTENTS page ACKNOWLEDGEMENTS ............................................................................................... 3 LIST OF FIGURES .......................................................................................................... 5 ABSTRACT ..................................................................................................................... 6 CHAPTER 1 INTRODUCTION ...................................................................................................... 7 2 OBJECTIVE AND SPECIFIC AIM .......................................................................... 11 3 MATERIALS AND METHODS ................................................................................ 12 Materials ................................................................................................................
    [Show full text]
  • Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures
    biomolecules Article Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures María A. Campanero-Rhodes 1,2 , Ioanna Kalograiaki 1,2, Begoña Euba 3, Enrique Llobet 2,4, Ana Ardá 5,6 , Jesús Jiménez-Barbero 5,6,7 , Junkal Garmendia 2,3 and Dolores Solís 1,2,* 1 Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain; [email protected] (M.A.C.-R.); [email protected] (I.K.) 2 CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain; [email protected] (E.L.); [email protected] (J.G.) 3 Instituto de Agrobiotecnología, CSIC-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain; [email protected] 4 Optimapharm, ParcBit Edifici Disset A2, 07121 Palma, Spain 5 CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain; [email protected] (A.A.); [email protected] (J.J.-B.) 6 Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain 7 Department Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain * Correspondence: [email protected] Abstract: Galectins bind various pathogens through recognition of distinct carbohydrate structures. Citation: Campanero-Rhodes, M.A.; In this work, we examined the binding of four human galectins to the Gram-negative bacteria Kalograiaki, I.; Euba, B.; Llobet, E.; Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different Ardá, A.; Jiménez-Barbero, J.; surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an Garmendia, J.; Solís, D.
    [Show full text]
  • Lectins and Their Ligands in Shaping Immune Responses
    EDITORIAL published: 09 October 2019 doi: 10.3389/fimmu.2019.02379 Editorial: Lectins and Their Ligands in Shaping Immune Responses Bernd Lepenies 1* and Roland Lang 2* 1 Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hanover, Germany, 2 Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Keywords: glycoimmunology, lectins, C-type lectins, galectins, siglecs, myeloid cells, dendritic cells, immunomodulation Editorial on the Research Topic: Lectins and Their Ligands in Shaping Immune Responses Lectins are glycan-binding proteins that are involved in numerous biological processes including cell development, cell–cell interactions, signaling pathways, and the immune response. In innate immunity, lectins often act as pattern recognition receptors (PRRs) and recognize pathogen-associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs). Thus, lectins may contribute to a protective immune response, for instance during infections, but they may also be involved in immune pathology, for instance during sterile inflammation. Main classes of lectins in innate immunity include C-type lectin receptors (CLRs), siglecs, and galectins. Due to the manifold functions of these different classes of lectins in anti- microbial defense as well as immune homeostasis, lectin targeting is a promising strategy to shape immune responses in the context of infections, autoimmunity, cancer, or vaccination. This Research Topic provides original research and discussions focusing on aspects such as ligand recognition by lectin receptors, induced signaling pathways, and lectin-mediated effector Edited and reviewed by: functions during infections and inflammatory processes. It also addresses the identification and Francesca Granucci, characterization of novel lectin ligands and discusses how lectin targeting can be exploited to University of Milano Bicocca, Italy stimulate or modulate immune responses.
    [Show full text]
  • Inhibition of Galectin-1 Sensitizes HRAS-Driven Tumor Growth to Rapamycin Treatment JAMES V
    ANTICANCER RESEARCH 36 : 5053-5062 (2016) doi:10.21873/anticanres.11074 Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment JAMES V. MICHAEL 1, JEREMY G.T. WURTZEL 1 and LAWRENCE E. GOLDFINGER 1,2 1Department of Anatomy and Cell Biology, The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A.; 2Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, U.S.A. Abstract. The goal of this study was to develop The rat sarcoma (RAS) genes most prominently associated combinatorial application of two drugs currently either in with cancer, Harvey RAS ( HRAS ), neuroblastoma RAS active use as anticancer agents (rapamycin) or in clinical (NRAS ) and Kirsten RAS ( KRAS ), are ubiquitously expressed trials (OTX008) as a novel strategy to inhibit Harvey RAS and have overlapping, yet non-redundant functions (1). RAS (HRAS)-driven tumor progression. HRAS anchored to the proteins cycle between an active GTP-bound and an inactive plasma membrane shuttles from the lipid ordered (L o) GDP-bound state. Active RAS stimulates mitogenic and domain to the lipid ordered/lipid disordered border upon survival signal transduction by coupling to effectors activation, and retention of HRAS at these sites requires including rapidly accelerated fibrosarcoma (RAF) kinase for galectin-1. We recently showed that genetically enforced L o propagation of the mitogen-activated protein kinase (MAPK) sequestration of HRAS inhibited mitogen-activated protein pathway [RAS/RAF/MAPK kinase (MEK)/extracellular kinase (MAPK) signaling, but not phoshatidylinositol 3- regulated kinase (ERK)], and phosphatidylinositol 3-kinase kinase (PI3K) activation. Here we show that inhibition of (PI3K) pathways (2).
    [Show full text]
  • Galectins As Molecular Targets for Therapeutic Intervention
    International Journal of Molecular Sciences Review Galectins as Molecular Targets for Therapeutic Intervention Ruud P. M. Dings 1 ID , Michelle C. Miller 2 ID , Robert J. Griffin 1 and Kevin H. Mayo 2,* 1 Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; [email protected] (R.P.M.D.); rjgriffi[email protected] (R.J.G.) 2 Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-612-625-9968; Fax: +1-612-624-5121 Received: 27 February 2018; Accepted: 15 March 2018; Published: 19 March 2018 Abstract: Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer. Keywords: galectins; carbohydrates; apoptosis; cell adhesion; protein structure; cancer; galectin- targeted therapeutics 1. Galectins from a Structural Perspective Galectin-1 (Gal-1) has been the most studied and well-characterized galectin [1], since it was the first galectin discovered by its display of hemagglutinating activity [2]. Currently at least 14 mammalian galectins have been reported, and many more are found in different organisms, e.g., vertebrates, inter-vertebrates, and protists [3–5].
    [Show full text]
  • Galectin-9 Binds Igm-BCR to Regulate B Cell Signaling
    ARTICLE DOI: 10.1038/s41467-018-05771-8 OPEN Galectin-9 binds IgM-BCR to regulate B cell signaling Anh Cao 1, Nouf Alluqmani2, Fatima Hifza Mohammed Buhari3, Laabiah Wasim1, Logan K. Smith1, Andrew T. Quaile 4, Michael Shannon5, Zaki Hakim2, Hossai Furmli3, Dylan M. Owen5, Alexei Savchenko4,6 & Bebhinn Treanor 1,2,3 The galectin family of secreted lectins have emerged as important regulators of immune 1234567890():,; cell function; however, their role in B-cell responses is poorly understood. Here we identify IgM-BCR as a ligand for galectin-9. Furthermore, we show enhanced BCR microcluster formation and signaling in galectin-9-deficient B cells. Notably, treatment with exogenous recombinant galectin-9 nearly completely abolishes BCR signaling. We investigated the molecular mechanism for galectin-9-mediated inhibition of BCR signaling using super- resolution imaging and single-particle tracking. We show that galectin-9 merges pre-existing nanoclusters of IgM-BCR, immobilizes IgM-BCR, and relocalizes IgM-BCR together with the inhibitory molecules CD45 and CD22. In resting naive cells, we use dual-color super- resolution imaging to demonstrate that galectin-9 mediates the close association of IgM and CD22, and propose that the loss of this association provides a mechanism for enhanced activation of galectin-9-deficient B cells. 1 Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada. 2 Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, ON M5S 3G5, Canada. 3 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
    [Show full text]