Klinik Und Poliklinik Für Mund-Kiefer-Gesichtschirurgie Der Technischen Universität München Klinikum Rechts Der Isar

Total Page:16

File Type:pdf, Size:1020Kb

Klinik Und Poliklinik Für Mund-Kiefer-Gesichtschirurgie Der Technischen Universität München Klinikum Rechts Der Isar Klinik und Poliklinik für Mund-Kiefer-Gesichtschirurgie der Technischen Universität München Klinikum rechts der Isar (Direktor: Univ.-Prof. Dr. Dr. Dr. h.c. (UMF Temeschburg) H.-H. Horch) 3D Interactive Segmentation – First Applications for Computer-Aided Craniofacial Surgical Planning Lutz Ritter Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation. Vorsitzender: Univ.-Prof. D. Neumeier Prüfer der Dissertation: 1. Prof. Dr. Dr. H.-F. Zeilhofer, Universität Basel / Schweiz 2. Univ.-Prof. Dr. Dr. Dr. h.c. (UMF Temeschburg) H-H. Horch Die Disseration wurde am 04.03.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 11.05.2005 angenommen. 1 Summary ............................................................................................................1 2 Introduction ......................................................................................................2 3 Rationale ............................................................................................................5 4 Related Work.....................................................................................................8 4.1 3D Slicer ...................................................................................................................9 4.2 Analyze ...................................................................................................................12 4.3 Amira......................................................................................................................14 4.4 Mimics ....................................................................................................................17 4.5 3D Interactive Segmentation..................................................................................18 5 Material and Methods ...................................................................................19 5.1 Computer Tomography...........................................................................................19 5.1.1 Technique ...........................................................................................................................................20 5.1.2 Scanners and Protocols ..................................................................................................................21 5.1.3 Image Quality ...................................................................................................................................22 5.1.4 Implications of Image Acquisition on 3D Model Generation ..............................................23 5.2 Patient Data ...........................................................................................................24 5.3 Computer Hardware ..............................................................................................25 5.4 Julius - A General Software Framework ...............................................................26 5.5 Data Management ..................................................................................................27 5.5.1 Image Transfer .................................................................................................................................27 5.5.2 Image Formats..................................................................................................................................29 5.5.3 Criteria For Efficient Data Management .................................................................................30 5.6 Image Enhancement...............................................................................................31 5.6.1 General Aspects................................................................................................................................31 5.6.2 Criteria for Image Enhancement of Medical CT Images .....................................................32 5.6.3 Low Pass Filtering...........................................................................................................................33 5.6.4 Median Filtering ..............................................................................................................................34 5.6.5 Markov Random Fields Filtering................................................................................................34 5.6.6 Anisotropic Diffusion Filtering ....................................................................................................35 5.6.7 Metal Artifact Removal Filter......................................................................................................35 5.7 Visualization ..........................................................................................................36 5.7.1 General Aspects................................................................................................................................36 5.7.2 2D Visualization...............................................................................................................................38 5.7.3 3D Volume Visualization ...............................................................................................................39 5.7.4 3D Surface Visualization ...............................................................................................................40 5.7.5 Criteria For Efficient Visualization............................................................................................41 5.8 Image Segmentation...............................................................................................42 5.8.1 General Aspects................................................................................................................................42 5.8.2 Threshold Segmentation................................................................................................................43 5.8.3 Region Growing Segmentation ....................................................................................................45 5.8.4 Manual Segmentation ....................................................................................................................45 5.9 Evaluation of Segmentation Algorithms................................................................47 5.9.1 Procedure............................................................................................................................................47 5.9.2 Hausdorff Distance (Maximum Surface Distance) ................................................................48 5.9.3 Mean Distance ..................................................................................................................................49 -ii- 6 Results ..............................................................................................................50 6.1 Data Management ..................................................................................................50 6.2 Image Enhancement...............................................................................................53 6.2.1 Low Pass Filtering...........................................................................................................................53 6.2.2 Median Filtering ..............................................................................................................................55 6.2.3 Anisotropic Diffusion Filtering ....................................................................................................56 6.2.4 Markov Random Field Filtering..................................................................................................57 6.2.5 Metal Artifact Removal..................................................................................................................59 6.3 Visualization ..........................................................................................................60 6.3.1 Volume Visualization......................................................................................................................60 6.3.2 3D Model Reconstruction...............................................................................................................61 6.4 Segmentation..........................................................................................................63 6.5 Evaluation of Segmentation Algorithms................................................................64 6.6 A Processing Pipeline For The Generation of 3D Surface Models .........................67 7 Discussion ........................................................................................................69 7.1 Data Management ..................................................................................................69 7.2 Image Enhancement...............................................................................................69 7.3 Segmentation..........................................................................................................70 7.4 Evaluation of 3D Interactive Segmentation...........................................................72 7.5 3D Model Reconstruction .......................................................................................74 7.6 Julius – a General Software Framework ...............................................................75 8 Conclusion .......................................................................................................76
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours
    A 3D interactive multi-object segmentation tool using local robust statistics driven active contours The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gao, Yi, Ron Kikinis, Sylvain Bouix, Martha Shenton, and Allen Tannenbaum. 2012. A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours. Medical Image Analysis 16, no. 6: 1216–1227. doi:10.1016/j.media.2012.06.002. Published Version doi:10.1016/j.media.2012.06.002 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28548930 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2013 August 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Med Image Anal. 2012 August ; 16(6): 1216–1227. doi:10.1016/j.media.2012.06.002. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours Yi Gaoa,*, Ron Kikinisb, Sylvain Bouixa, Martha Shentona, and Allen Tannenbaumc aPsychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 bSurgical Planning Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 cDepartments of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02115 Abstract Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community.
    [Show full text]
  • Anatomical Models from Imaging Data
    Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Magnetic Resonance Imaging (MRI) ◦ Human max. is 3T (Tesla) – resolution of 250µm x 250µm 0.5mm. ◦ High spatial resolution µMRI, 7-10T, 5-200µm. ◦ Magnetic nanoparticles. Computed tomography (CT)– Computer Axial Tomography ◦ Typical resolution of 0.24 – 0.3mm. ◦ µCT, resolution of 1-200µm. Ultrasound ◦ Resolution of 1mm x 1.mm x 0.2mm. PET – Positron emission tomography SPECT – Single photon emission computed tomography Optical Coherence Tomography (OCT) Traditional optical techniques. Prof. Steven S. Saliterman Prof. Steven S. Saliterman Mayo Foundation for Medical Education and Research Prof. Steven S. Saliterman CT scan/PET Scan/ Combined Mayo Foundation for Medical Education and Research Prof. Steven S. Saliterman Purpose ◦ To delineate and isolate anatomical features within an imaging database- e.g. bone, cartilage, soft tissue, edema; muscle, lung, brain & other organs, and tumors. Method ◦ Extract images from DICOM files (ITK-Snap, Onis) and possible deindentifying them for HIPPA regulations (DICOMCleaner). ◦ Segmentation Software (ITK-Snap, Materialise Mimics, Materialise 3- matic). Pre-segmentation Phase - identify parts of image as foreground and background. Active Contour Phase - manual and semiautomatic methods. ◦ Editing and fixing mesh files (.STL) - Autodesk Meshmixer. ◦ Slicer software – Simplify3D and Repetier. G-coding for the specific bioprinter - e.g. Slic3R (printer customized interface to control what happens in a sequence of control steps.) Prof. Steven S. Saliterman Sagittal or Median Parasagittal (Yellow) Transverse or Axial Frontal or Coronal Prof. Steven S. Saliterman Image, Wikipedia Manual Segmentation… Prof. Steven S. Saliterman Prof. Steven S. Saliterman Prof. Steven S. Saliterman Prof.
    [Show full text]
  • An Open-Source Research Platform for Image-Guided Therapy
    Int J CARS DOI 10.1007/s11548-015-1292-0 ORIGINAL ARTICLE CustusX: an open-source research platform for image-guided therapy Christian Askeland1,3 · Ole Vegard Solberg1 · Janne Beate Lervik Bakeng1 · Ingerid Reinertsen1 · Geir Arne Tangen1 · Erlend Fagertun Hofstad1 · Daniel Høyer Iversen1,2,3 · Cecilie Våpenstad1,2 · Tormod Selbekk1,3 · Thomas Langø1,3 · Toril A. Nagelhus Hernes2,3 · Håkon Olav Leira2,3 · Geirmund Unsgård2,3 · Frank Lindseth1,2,3 Received: 3 July 2015 / Accepted: 31 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Results The validation experiments show a navigation sys- Purpose CustusX is an image-guided therapy (IGT) research tem accuracy of <1.1mm, a frame rate of 20 fps, and latency platform dedicated to intraoperative navigation and ultra- of 285ms for a typical setup. The current platform is exten- sound imaging. In this paper, we present CustusX as a robust, sible, user-friendly and has a streamlined architecture and accurate, and extensible platform with full access to data and quality process. CustusX has successfully been used for algorithms and show examples of application in technologi- IGT research in neurosurgery, laparoscopic surgery, vascular cal and clinical IGT research. surgery, and bronchoscopy. Methods CustusX has been developed continuously for Conclusions CustusX is now a mature research platform more than 15years based on requirements from clinical for intraoperative navigation and ultrasound imaging and is and technological researchers within the framework of a ready for use by the IGT research community. CustusX is well-defined software quality process. The platform was open-source and freely available at http://www.custusx.org.
    [Show full text]
  • Medical Image Processing Software
    Wohlers Report 2018 Medical Image Processing Software Medical image Patient-specific medical devices and anatomical models are almost always produced using radiological imaging data. Medical image processing processing software is used to translate between radiology file formats and various software AM file formats. Theoretically, any volumetric radiological imaging dataset by Andy Christensen could be used to create these devices and models. However, without high- and Nicole Wake quality medical image data, the output from AM can be less than ideal. In this field, the old adage of “garbage in, garbage out” definitely applies. Due to the relative ease of image post-processing, computed tomography (CT) is the usual method for imaging bone structures and contrast- enhanced vasculature. In the dental field and for oral- and maxillofacial surgery, in-office cone-beam computed tomography (CBCT) has become popular. Another popular imaging technique that can be used to create anatomical models is magnetic resonance imaging (MRI). MRI is less useful for bone imaging, but its excellent soft tissue contrast makes it useful for soft tissue structures, solid organs, and cancerous lesions. Computed tomography: CT uses many X-ray projections through a subject to computationally reconstruct a cross-sectional image. As with traditional 2D X-ray imaging, a narrow X-ray beam is directed to pass through the subject and project onto an opposing detector. To create a cross-sectional image, the X-ray source and detector rotate around a stationary subject and acquire images at a number of angles. An image of the cross-section is then computed from these projections in a post-processing step.
    [Show full text]
  • Customized Product Design Based on Medical Imaging
    INTERNATIONAL DESIGN CONFERENCE - DESIGN 2012 Dubrovnik - Croatia, May 21 - 24, 2012. CUSTOMIZED PRODUCT DESIGN BASED ON MEDICAL IMAGING G. Harih, B. Dolšak and J. Kaljun Keywords: product design, customization, medical imaging, reverse engineering, innovation 1. Introduction Design is a very complex task even for an experienced designer. Only designer who are capable of creative and analytical thinking combined can solve complex design problems. Technological innovation pushes the creativity to new limits and therefore designers are forced to design new products with new functionality within ever shorter time to market deadlines [Ye et al. 2008]. Computer Aided Engineering (CAE) software, especially Computer Aided Design (CAD) software has made great progress recently. Thereby the designer has comprehensive tools to meet the expectations of the company, although the creative and innovative thinking cannot be stimulated through this software. Products are usually mass produced in order to keep the production costs at lowest level and are therefore designed to suit a wide population. However there has been an increased market demand of customized products which incorporate whole product customization or customized parts [Merle et al. 2010]. Major part of companies or institutions who utilize customization can be attributed to medical applications (medical prosthesis, implants, splints, etc). Recent extensive development in various technologies such as medical imaging, 3D scanners and rapid prototyping has impacted also customization within luxury products and in products where high stresses an exceptional performance is expected such as high performance tools and gear, professional sports equipment and military equipment. In order to produce a customized part, the designer has an even more complex design process to overcome.
    [Show full text]
  • An Open Source Freeware Software for Ultrasound Imaging and Elastography
    Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, Istanbul,˙ Turkey, July 16 - August 10, 2007 USIMAGTOOL: AN OPEN SOURCE FREEWARE SOFTWARE FOR ULTRASOUND IMAGING AND ELASTOGRAPHY Ruben´ Cardenes-Almeida´ 1, Antonio Tristan-Vega´ 1, Gonzalo Vegas-Sanchez-Ferrero´ 1, Santiago Aja-Fernandez´ 1, Veronica´ Garc´ıa-Perez´ 1, Emma Munoz-Moreno˜ 1, Rodrigo de Luis-Garc´ıa 1, Javier Gonzalez-Fern´ andez´ 2, Dar´ıo Sosa-Cabrera 2, Karl Krissian 2, Suzanne Kieffer 3 1 LPI, University of Valladolid, Spain 2 CTM, University of Las Palmas de Gran Canaria 3 TELE Laboratory, Universite´ catholique de Louvain, Louvain-la-Neuve, Belgium ABSTRACT • Open source code: to be able for everyone to modify and reuse the source code. UsimagTool will prepare specific software for the physician to change parameters for filtering and visualization in Ultrasound • Efficiency, robust and fast: using a standard object ori- Medical Imaging in general and in Elastography in particular, ented language such as C++. being the first software tool for researchers and physicians to • Modularity and flexibility for developers: in order to chan- compute elastography with integrated algorithms and modular ge or add functionalities as fast as possible. coding capabilities. It will be ready to implement in different • Multi-platform: able to run in many Operating systems ecographic systems. UsimagTool is based on C++, and VTK/ITK to be useful for more people. functions through a hidden layer, which means that participants may import their own functions and/or use the VTK/ITK func- • Usability: provided with an easy to use GUI to interact tions. as easy as possible with the end user.
    [Show full text]
  • Development and Characterization of the Invesalius Navigator Software for Navigated Transcranial Magnetic Stimulation T ⁎ Victor Hugo Souzaa, ,1, Renan H
    Journal of Neuroscience Methods 309 (2018) 109–120 Contents lists available at ScienceDirect Journal of Neuroscience Methods journal homepage: www.elsevier.com/locate/jneumeth Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation T ⁎ Victor Hugo Souzaa, ,1, Renan H. Matsudaa, André S.C. Peresa,b, Paulo Henrique J. Amorimc, Thiago F. Moraesc, Jorge Vicente L. Silvac, Oswaldo Baffaa a Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil b Instituto Internacional de Neurociência de Natal Edmond e Lily Safra, Instituto Santos Dumont, Rodovia RN 160 Km 03, 3003, 59280-000, Macaíba, RN, Brazil c Núcleo de Tecnologias Tridimensionais, Centro de Tecnologia da Informação Renato Archer, Rodovia Dom Pedro I Km 143, 13069-901, Campinas, SP, Brazil GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Background: Neuronavigation provides visual guidance of an instrument during procedures of neurological in- Neuronavigation terventions, and has been shown to be a valuable tool for accurately positioning transcranial magnetic stimu- Transcranial magnetic stimulation lation (TMS) coils relative to an individual’s anatomy. Despite the importance of neuronavigation, its high cost, Localization error low portability, and low availability of magnetic resonance imaging facilities limit its insertion in research and Co-registration clinical environments. Coil positioning New method: We have developed and validated the InVesalius Navigator as the first free, open-source software Surgical planning for image-guided navigated TMS, compatible with multiple tracking devices. A point-based, co-registration al- gorithm and a guiding interface were designed for tracking any instrument (e.g.
    [Show full text]
  • Kitware Source Issue 21
    SOFTWARE DEVELOPER’S QUARTERLY Issue 21 • April 2012 Editor’s Note ........................................................................... 1 PARAVIEW 3.14 RELEASED In late February, Kitware and the ParaView team released Recent Releases ..................................................................... 1 ParaView 3.14. This release features usability enhancements, improvements to the Plugin framework, new panels, and ParaView in Immersive Environments .................................. 3 more than 100 other resolved issues. Teaching Open Source .......................................................... 4 ParaView 3.14 features a redesigned Find Data dialog and Color Editor. The updated Find Data dialog makes it possible ParaView Query Selection Framework................................. 7 to use complex queries to select elements, including combin- ing multiple test cases with Boolean operations. The Color Ginkgo CADx: Open Source DICOM CADx Environment .... 8 Editor, used to edit lookup tables or color tables for scalar mapping, now enables independent editing of the color and Code Review, Topic Branches and VTK ................................. 9 opacity functions. Video Analysis on Business Intelligence, ParaView’s charting capabilities have been extended with a Studies in Computational Intelligence ............................... 11 new scatter plot matrix view and the ability to visualize mul- tiple dimensions of data in one compact form. This improved The Visible Patient ..............................................................
    [Show full text]
  • Automated 3D Visualization of Brain Cancer
    AUTOMATED 3D VISUALIZATION OF BRAIN CANCER AUTOMATED 3D VISUALIZATION OF BRAIN CANCER By MONA AL-REI, MSc. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment of the Requirements for the Degree Master of eHealth Program McMaster University @ Copyright by Mona Al-Rei, June 2017 McMaster University Master of eHealth (2017) Hamilton, Ontario TITLE: 3D Brain Cancer Visualization. AUTHOR: Mona Al-Rei. SUPERVISOR: Dr. Thomas Doyle. SUPERVISRORY COMMITTEE: Dr. Reza Samavi, Dr. David Koff. NUMBER OF PAGES: xvii, 119. ii To my beloved and wounded country Yemen iii Abstract Three-dimensional (3D) visualization in cancer control has seen recent progress due to the benefits it offers to the treatment, education, and understanding of the disease. This work identifies the need for an application that directly processes two-dimensional (2D) DICOM images for the segmentation of a brain tumor and the generation of an interactive 3D model suitable for enabling multisensory learning and visualization. A new software application (M-3Ds) was developed to meet these objectives with three modes of segmentation (manual, automatic, and hybrid) for evaluation. M-3Ds software was designed to mitigate the cognitive load and empower health care professionals in their decision making for improved patient outcomes and safety. Comparison of mode accuracy was evaluated. Industrial standard software programs were employed to verify and validate the results of M-3Ds using quantitative volumetric comparison. The study determined that M-3Ds‘ hybrid mode was the highest accuracy with least user intervention for brain tumor segmentation and suitable for the clinical workflow. This paper presents a novel approach to improve medical education, diagnosis, treatment for either surgical planning or radiotherapy of brain cancer.
    [Show full text]
  • Software for Bioprinting Catherine Pakhomova1,2*, Dmitry Popov1, Eugenii Maltsev1, Iskander Akhatov1, Alexander Pasko1,3
    REVIEW ARTICLE Software for Bioprinting Catherine Pakhomova1,2*, Dmitry Popov1, Eugenii Maltsev1, Iskander Akhatov1, Alexander Pasko1,3 1Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 2Institute of Engineering Physics for Biomedicine, NRNU Mephi, Moscow 3The National Centre for Computer Animation, Bournemouth University, UK Abstract: The bioprinting of heterogeneous organs is a crucial issue. To reach the complexity of such organs, there is a need for highly specialized software that will meet all requirements such as accuracy, complexity, and others. The primary objective of this review is to consider various software tools that are used in bioprinting and to reveal their capabilities. The sub-objective was to consider different approaches for the model creation using these software tools. Related articles on this topic were analyzed. Software tools are classified based on control tools, general computer-aided design (CAD) tools, tools to convert medical data to CAD formats, and a few highly specialized research-project tools. Different geometry representations are considered, and their advantages and disadvantages are considered applicable to heterogeneous volume modeling and bioprinting. The primary factor for the analysis is suitability of the software for heterogeneous volume modeling and bioprinting or multimaterial three- dimensional printing due to the commonality of these technologies. A shortage of specialized suitable software tools is revealed. There is a need to develop
    [Show full text]
  • Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandibular Condyle
    International Journal of Environmental Research and Public Health Article Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandibular Condyle. A Comparative Study Using a Surface-to-Surface Matching Technique Antonino Lo Giudice 1 , Vincenzo Quinzi 2 , Vincenzo Ronsivalle 1 , Marco Farronato 3 , Carmelo Nicotra 1, Francesco Indelicato 4 and Gaetano Isola 4,* 1 Department of General Surgery and Surgical-Medical Specialties, Section of Orthodontics, School of Dentistry, University of Catania, 95123 Catania, Italy; [email protected] (A.L.G.); [email protected] (V.R.); [email protected] (C.N.) 2 Post Graduate School of Orthodontics, Department of Life, Health and Environmental Sciences, University of L’Aquila, V.le San Salvatore, 67100 L’Aquila, Italy; [email protected] 3 Department of Medicine, Surgery and Dentistry, Section of Orthodontics, University of Milan, 20122 Milan, Italy; [email protected] 4 Department of General Surgery and Surgical-Medical Specialties, Section of Oral Surgery and Periodontology, School of Dentistry, University of Catania, 95123 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-3782453 Received: 29 May 2020; Accepted: 1 July 2020; Published: 3 July 2020 Abstract: The aim of this study was to assess the accuracy of 3D rendering of the mandibular condylar region obtained from different semi-automatic segmentation methodology. A total of 10 Cone beam computed tomography (CBCT) were selected to perform semi-automatic segmentation of the condyles by using three free-source software (Invesalius, version 3.0.0, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brazil; ITK-Snap, version2.2.0; Slicer 3D, version 4.10.2) and one commercially available software Dolphin 3D (Dolphin Imaging, version 11.0, Chatsworth, CA, USA).
    [Show full text]