Bioimagesuite Manual 95522 2

Total Page:16

File Type:pdf, Size:1020Kb

Bioimagesuite Manual 95522 2 v2.6 c Copyright 2008 X. Papademetris, M. Jackowski, N. Rajeevan, R.T. Constable, and L.H Staib. Section of Bioimaging Sciences, Dept. of Diagnostic Radiology, Yale School of Medicine. All Rights Reserved ii Draft July 18, 2008 v2.6 Contents I A. Overview 1 1. Introduction 2 1.1. BioImage Suite Functionality . 3 1.2. BioImage Suite Software Infrastructure . 4 1.3. A Brief History . 4 2. Background 6 2.1. Applications of Medical Imaging Analysis: A Brief Overview . 6 2.2. Medical Image Processing & Analysis . 8 2.3. Software Development Related to Medical Image Analysis . 9 2.4. 3D Graphics and Volume Rendering . 11 3. Starting and Running BioImage Suite 18 3.1. Installation Overview . 18 3.2. Installation Instructions . 19 3.3. The Main BioImage Suite Menu . 22 3.4. Preferences Editor . 23 4. Application Structure 26 4.1. Application Structure Overview . 26 4.2. The File Menu . 27 4.3. The Display Menu . 31 5. Looking At Images 32 5.1. Image Formats . 32 5.2. The Viewers . 33 5.3. The Colormap Editor . 37 5.4. Coordinates for NeuroImaging . 39 5.5. Atlas Tools . 44 6. Advanced Image Visualization 47 6.1. 4D Images . 47 6.2. 3D Rendering Controls . 48 6.3. Volume Rendering . 48 6.4. Oblique Slices . 53 6.5. The Animation Tool . 54 iii Draft July 18, 2008 CONTENTS v2.6 II B. Anatomical Image Analysis 59 7. The Image Processing and Histogram Tools 60 7.1. Introduction . 60 7.2. “Image” and “Results” . 61 7.3. Histogram Control . 62 7.4. The Image Processing Control . 64 7.5. EXAMPLE:Reorientation of Images . 69 8. The Interactive Segmentation Tools 71 8.1. Introduction . 71 8.2. The Objectmap Editor Tools . 73 8.3. The Surface Editor . 74 8.4. Delineating a surface: a step-by-step recipe. 83 9. Tissue Classification 84 9.1. Accessing the Segmentation Tool . 84 9.2. Math Morphology . 85 9.3. Histogram Segmentation . 87 9.4. FSL Brain Extraction Tool . 88 9.5. Grey/White Segmentation – using FSL Fast . 92 9.6. Bias Field Correction . 93 9.7. Appendix: A Little bit of Theory . 97 10.Linear Registration 99 10.1. Accessing the Registration Tools . 100 10.2. Registration — Transformation . 102 10.3. Manual Registration . 107 10.4. Linear Registration (Intensity Based) . 109 10.5. Functional Overlay . 110 10.6. Image Compare . 113 10.7. EXAMPLE: Interactive Registration Tools . 114 10.8. Linear Transformations Theory: . 120 11.Non Linear Registration 122 11.1. Introduction . 122 11.2. Visualizing NonLinear Transformations . 122 11.3. Nonrigid Registration (Intensity Based) . 124 11.4. Distortion Correction (Single Axis Distortion) . 125 11.5. Batch Mode Registration . 125 11.6. Example: Co-register reference 3D brain with individual 3D brain . 132 11.7. Checking 3D to Reference non-linear registrations . 134 11.8. Remarks . 135 12.Landmarks, Surfaces and Point-based Registration 136 12.1. Introduction . 136 12.2. Acquiring Landmarks . 136 12.3. The Surface Control and the Surface Objectmap Control . 140 12.4. Point-based Registration Tools . 145 iv Draft July 18, 2008 CONTENTS v2.6 12.5. Appendix: An Overview of Robust Point Matching . 147 III C. Functional MRI Analysis 150 13.The Single Subject fMRI Tool 151 13.1. Introduction . 151 13.2. The fMRI Tool User Interface . 151 IV D. Multi Subject/Multi Image Analysis 162 14.The Multi-Subject Control 163 14.1. Introduction . 163 14.2. Setup File Format . 164 14.3. The Multisubject Tool Graphical User Interface . 167 14.4. Examples . 174 14.5. The new SimpleViewer Tool . 183 15.The Data Tree Manager 185 15.1. Introduction . 185 15.2. The Tree . 185 15.3. Space, Anatomical, and Functional Images . 192 15.4. The Overlay Tab . 195 15.5. Multiple Image Calculations . 195 15.6. Functionality for Intracranial Electrode Attributes . 197 15.7. Options . 200 V E. Diffusion Weighted Image Analysis 202 16.Diffusion Tensor Image Analysis 203 16.1. Introduction . 203 16.2. Accessing the Diffusion Tool . 204 16.3. Tensor Utility . 204 16.4. Loading diffusion-weighted images (DWI) . 204 16.5. Specifying gradient directions . 205 16.6. Loading a mask . 206 16.7. Computing the tensor . 207 16.8. Tensor transformations . 207 17.Diffusion Tensor Analysis 210 17.1. Introduction . 210 17.2. Loading the diffusion tensor . 210 17.3. Results . 211 17.4. Statistics . 211 17.5. Visualization . 212 17.6. Transformations . 215 v Draft July 18, 2008 CONTENTS v2.6 18.Fiber Tracking 216 18.1. Introduction . ..
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours
    A 3D interactive multi-object segmentation tool using local robust statistics driven active contours The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gao, Yi, Ron Kikinis, Sylvain Bouix, Martha Shenton, and Allen Tannenbaum. 2012. A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours. Medical Image Analysis 16, no. 6: 1216–1227. doi:10.1016/j.media.2012.06.002. Published Version doi:10.1016/j.media.2012.06.002 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28548930 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2013 August 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Med Image Anal. 2012 August ; 16(6): 1216–1227. doi:10.1016/j.media.2012.06.002. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours Yi Gaoa,*, Ron Kikinisb, Sylvain Bouixa, Martha Shentona, and Allen Tannenbaumc aPsychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 bSurgical Planning Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 cDepartments of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02115 Abstract Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community.
    [Show full text]
  • The Flightgear Manual
    The FlightGear Manual Michael Basler, Martin Spott, Stuart Buchanan, Jon Berndt, Bernhard Buckel, Cameron Moore, Curt Olson, Dave Perry, Michael Selig, Darrell Walisser, and others The FlightGear Manual February 22, 2010 For FlightGear version 2.0.0 2 Contents 0.1 Condensed Reading.........................6 0.2 Instructions For the Truly Impatient................6 0.3 Further Reading...........................6 I Installation9 1 Want to have a free flight? Take FlightGear! 11 1.1 Yet Another Flight Simulator?................... 11 1.2 System Requirements........................ 14 1.3 Choosing A Version......................... 15 1.4 Flight Dynamics Models...................... 16 1.5 About This Guide.......................... 16 2 Preflight: Installing FlightGear 19 2.1 Installing scenery.......................... 19 2.1.1 MS Windows Vista/7.................... 20 2.1.2 Mac OS X......................... 20 2.1.3 FG_SCENERY....................... 20 2.1.4 Fetch Scenery as you fly.................. 21 2.1.5 Creating your own Scenery................. 22 2.2 Installing aircraft.......................... 22 2.3 Installing documentation...................... 22 II Flying with FlightGear 25 3 Takeoff: How to start the program 27 3.1 Environment Variables....................... 27 3.1.1 FG_ROOT......................... 27 3.1.2 FG_SCENERY....................... 27 3.1.3 Environment Variables on Windows and Mac OS X.... 27 3.2 Launching the simulator under Unix/Linux............ 28 3.3 Launching the simulator under Windows.............. 29 3.3.1 Launching from the command line............. 30 3 4 CONTENTS 3.4 Launching the simulator under Mac OS X............. 30 3.4.1 Selecting an aircraft and an airport............. 31 3.4.2 Enabling on-the-fly scenery downloading......... 31 3.4.3 Enabling Navigation Map (Atlas)............
    [Show full text]
  • Starkits 22 II
    CHAPTER 22 Tclkit and Starkits 22 II. Advanced Tcl Tclkit is a version of the Tcl/Tk interpreter that is designed to make packaging and deployment of Tcl applications easy. Tclkit includes Tcl/Tk, [incr Tcl], the Metakit database, and TclVFS. A Starkit is a special file that contains all the scripts and supporting files you need for your Tcl application. This chapter describes how to package and deploy your application as a Starkit. This Chapter is from Practical Programming in Tcl and Tk, 4th Ed. Copyright 2003 © Brent Welch http://www.beedub.com/book/ Tclkit was created by Jean-Claude Wip- pler as a way to make deploying Tcl applications easier. Tclkit is an extended Tcl interpreter that includes the Metakit database, the [incr Tcl] object-oriented sys- tem, and a Virtual File System (VFS). The database is cleverly stored as part of the Tclkit application itself, and the VFS interface is used to make the database look like a private filesystem. Tclkit puts all the scripts normally associated with Tcl and its extensions into this database. The result is a self-contained, single file distribution of Tcl that includes extensions for your GUI, object-oriented pro- gramming, a database, and a few other goodies. Metakit is a fast, transactional database with a simple programming API. Like Tcl, Metakit is a compact, efficient library designed to be embedded into applications. The Tcl interface to Metakit gives you a simple, easy way to manip- ulate persistent data. Although you do not have to program Metakit directly when using Starkits, this Chapter does provide a short introduction to using Metakit to store data for your application.
    [Show full text]
  • Pyvista: Managing & Visualizing Geospatial Data Using an Open
    PYVISTA: MANAGING & VISUALIZING GEOSPATIAL DATA USING AN OPEN-SOURCE FRAMEWORK by C. Bane Sullivan c Copyright by C. Bane Sullivan, 2020 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Hydrol- ogy). Golden, Colorado Date Signed: C. Bane Sullivan Signed: Dr. Whitney J. Trainor-Guitton Thesis Advisor Golden, Colorado Date Signed: Dr. Josh Sharp Professor and Director Hydrologic Science & Engineering Program ii ABSTRACT There is a wide range of data types present in typical hydrogeophysical studies; being able to gather all data types for a given project into a single framework is challenging and often unachievable at an affordable cost for hydrological researchers. Steep licensing fees for commercial software and complex user interfaces in existing open software have limited the accessibility of tools to build, integrate, and make decisions with diverse types of 3D geospa- tial data and models. In earth science research, particularly in hydrology, restricted budgets exacerbate these limitations, creating barriers for using software to manage, visualize, and exchange 3D data in reproducible workflows. In response to these challenges, I have created the PyVista software as an open-source framework for 3D geospatial data management, fu- sion, and visualization. The PyVista Python package provides an accessible and intuitive interface back to a robust and established visualization library, the Visualization Toolkit (VTK), to facilitate rapid analysis and visual integration of spatially referenced datasets. This interface implements spatial data structures encompassing a majority of subsurface applications to make creating, managing, and analyzing spatial data more streamlined for domain scientists.
    [Show full text]
  • An Open-Source Research Platform for Image-Guided Therapy
    Int J CARS DOI 10.1007/s11548-015-1292-0 ORIGINAL ARTICLE CustusX: an open-source research platform for image-guided therapy Christian Askeland1,3 · Ole Vegard Solberg1 · Janne Beate Lervik Bakeng1 · Ingerid Reinertsen1 · Geir Arne Tangen1 · Erlend Fagertun Hofstad1 · Daniel Høyer Iversen1,2,3 · Cecilie Våpenstad1,2 · Tormod Selbekk1,3 · Thomas Langø1,3 · Toril A. Nagelhus Hernes2,3 · Håkon Olav Leira2,3 · Geirmund Unsgård2,3 · Frank Lindseth1,2,3 Received: 3 July 2015 / Accepted: 31 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Results The validation experiments show a navigation sys- Purpose CustusX is an image-guided therapy (IGT) research tem accuracy of <1.1mm, a frame rate of 20 fps, and latency platform dedicated to intraoperative navigation and ultra- of 285ms for a typical setup. The current platform is exten- sound imaging. In this paper, we present CustusX as a robust, sible, user-friendly and has a streamlined architecture and accurate, and extensible platform with full access to data and quality process. CustusX has successfully been used for algorithms and show examples of application in technologi- IGT research in neurosurgery, laparoscopic surgery, vascular cal and clinical IGT research. surgery, and bronchoscopy. Methods CustusX has been developed continuously for Conclusions CustusX is now a mature research platform more than 15years based on requirements from clinical for intraoperative navigation and ultrasound imaging and is and technological researchers within the framework of a ready for use by the IGT research community. CustusX is well-defined software quality process. The platform was open-source and freely available at http://www.custusx.org.
    [Show full text]
  • Medical Image Processing Software
    Wohlers Report 2018 Medical Image Processing Software Medical image Patient-specific medical devices and anatomical models are almost always produced using radiological imaging data. Medical image processing processing software is used to translate between radiology file formats and various software AM file formats. Theoretically, any volumetric radiological imaging dataset by Andy Christensen could be used to create these devices and models. However, without high- and Nicole Wake quality medical image data, the output from AM can be less than ideal. In this field, the old adage of “garbage in, garbage out” definitely applies. Due to the relative ease of image post-processing, computed tomography (CT) is the usual method for imaging bone structures and contrast- enhanced vasculature. In the dental field and for oral- and maxillofacial surgery, in-office cone-beam computed tomography (CBCT) has become popular. Another popular imaging technique that can be used to create anatomical models is magnetic resonance imaging (MRI). MRI is less useful for bone imaging, but its excellent soft tissue contrast makes it useful for soft tissue structures, solid organs, and cancerous lesions. Computed tomography: CT uses many X-ray projections through a subject to computationally reconstruct a cross-sectional image. As with traditional 2D X-ray imaging, a narrow X-ray beam is directed to pass through the subject and project onto an opposing detector. To create a cross-sectional image, the X-ray source and detector rotate around a stationary subject and acquire images at a number of angles. An image of the cross-section is then computed from these projections in a post-processing step.
    [Show full text]
  • Introduction to Medical Image Computing
    1 MEDICAL IMAGE COMPUTING (CAP 5937)- SPRING 2017 LECTURE 1: Introduction Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL 32814. [email protected] or [email protected] 2 • This is a special topics course, offered for the second time in UCF. Lorem Ipsum Dolor Sit Amet CAP5937: Medical Image Computing 3 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am- 11.45am Lorem Ipsum Dolor Sit Amet CAP5937: Medical Image Computing 4 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am- 11.45am • Office hours: Lorem Ipsum Dolor Sit Amet Mon/Wed, 1pm- 2.30pm CAP5937: Medical Image Computing 5 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am-11.45am • Office hours: Mon/Wed, 1pm- 2.30pm • No textbook is Lorem Ipsum Dolor Sit Amet required, materials will be provided. • Avg. grade was A- last CAP5937: Medical Image Computing spring. 6 Image Processing Computer Vision Medical Image Imaging Computing Sciences (Radiology, Biomedical) Machine Learning 7 Motivation • Imaging sciences is experiencing a tremendous growth in the U.S. The NYT recently ranked biomedical jobs as the number one fastest growing career field in the nation and listed bio-medical imaging as the primary reason for the growth. 8 Motivation • Imaging sciences is experiencing a tremendous growth in the U.S. The NYT recently ranked biomedical jobs as the number one fastest growing career field in the nation and listed bio-medical imaging as the primary reason for the growth.
    [Show full text]
  • An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool
    ORIGINAL RESEARCH ARTICLE published: 27 March 2009 NEUROINFORMATICS doi: 10.3389/neuro.11.009.2009 DataViewer3D: an open-source, cross-platform multi-modal neuroimaging data visualization tool André Gouws*, Will Woods, Rebecca Millman, Antony Morland and Gary Green Department of Psychology, York NeuroImaging Centre, University of York, UK Edited by: Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance Rolf Kötter, Radboud University imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data Nijmegen, The Netherlands within a common, defi ned coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging Reviewed by: Stephen C. Strother, Baycrest, Canada; data visualization tool offering a cross-platform, open-source solution to simultaneous data University of Toronto, Canada overlay visualization requirements of imaging studies. While DV3D is primarily a visualization David Kennedy, Harvard Medical tool, the package allows an analysis approach where results from one imaging modality can School, USA guide comparative analysis of another modality in a single coordinate space. DV3D is built on *Correspondence: Python, a dynamic object-oriented programming language with support for integration of modular André Gouws, York NeuroImaging Centre, University of York, York Science toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the Park, York YO10 5DG, UK. power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling e-mail: [email protected] VTK’s low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user’s operating system dialogs and graphical user interface tools.
    [Show full text]
  • Performing Maximum Intensity Projection with the Visualization Toolkit
    Performing Maximum Intensity Projection with the Visualization Toolkit Stefan Bruckner∗ Seminar Paper The Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria Abstract intensity and the maximum intensity seen through a pixel is pro- jected onto that pixel. It looks more like a search algorithm than a Maximum Intensity Projection (MIP) is a volume rendering tech- traditional volume color/opacity accumulation algorithm. nique commonly used to depict vascular structures. The Visual- MIP is often employed in clinical practice for depicting vascular ization Toolkit (VTK) is an open source, freely available software structures. The data is a set of slices where most areas are dark, but system for 3D computer graphics, image processing, and visual- vessels tend to be brighter. This set is collapsed into a single image ization. In this paper, MIP and related methods are presented and by performing a projection through the set that assigns the bright- VTK's capabilities to use these methods are examined. est voxel over all slices to each pixel in the projection. In contrast Keywords: Visualization Toolkit, VTK, Maximum Intensity Pro- to DVR, MIP does not require the tedious generation of color and jection, MIP opacity transfer functions, but unlike SR it does still display den- sity information. In addition, since datasets usually contain a lot of noise, threshold values for SR, which allow extraction of vascular 1 Introduction structures are difficult to find. This paper gives an overview over MIP and related methods and For many scientific applications three-dimensional arrays of data shows how VTK can be used to perform these techniques efficiently.
    [Show full text]
  • Parallel Ray Tracing in Scientific Visualization
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library PARALLEL RAY TRACING IN SCIENTIFIC VISUALIZATION by Carson Brownlee A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah December 2012 Copyright © Carson Brownlee 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL Carson Brownlee The dissertation of has been approved by the following supervisory committee members: Charles D. Hansen 9/14/12 Chair Date Approved Steven G. Parker 9/14/12 Member Date Approved Peter Shirley 9/14/12 Member Date Approved Claudio T. Silva 9/19/12 Member Date Approved James Ahrens 9/14/12 Member Date Approved Alan Davis and by Chair of the Department of School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT Ray tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals.
    [Show full text]
  • VTK and Adobe Flash
    Visualization of Plasma Edges using VTK and Adobe Flash By LAVESH KUMAR GUPTA A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Electrical and Computer Engineering written under the direction of Prof Deborah Silver and approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey May, 2011 2011 LAVESH KUMAR GUPTA ALL RIGHTS RESERVED Abstract of the Thesis Visualization of Plasma Edges using VTK and Adobe Flash By Lavesh Kumar Gupta Thesis Director: Professor Deborah Silver Visualization is a very useful tool in the study and analysis of huge experimental or simulation datasets. It converts vast amount of numerical data into graphical images, extracts important hidden information and aids scientists in hypothesis building. This thesis focuses on migrating visualization module of Plasma Edge from commercial visualization software AVS to open source visualization library VTK. The VTK visualization module will be integrated in new plasma edge simulation code package at the Center for Plasma Edge Simulation for the study of plasma edge region relevant to both existing magnetic fusion facilities and next generation burning plasma experiments. VTK visualization module generates two set of images: 2D images representing cross- sectional view of 3D torroidal plane, and 3D images representing whole torroidal plane. Two Adobe Flash modules were also developed using open source Adobe Flex to integrate the VTK visualization module with eSimMon dashboard, a front-end tool for simulation monitoring. Using these modules, virtual 3D visualization capability was provided in the dashboard for viewing generated plasma images.
    [Show full text]