THE JEPSON GLOBE a Newsletter from the Friends of the Jepson Herbarium

Total Page:16

File Type:pdf, Size:1020Kb

THE JEPSON GLOBE a Newsletter from the Friends of the Jepson Herbarium THE JEPSON GLOBE A Newsletter from the Friends of The Jepson Herbarium VOLUME 19 NUMBER 1, May 2008 Curator’s Column: California’s Evolutionary Diversification of Amazing Hawaiian Flora the California Clarkias by Bruce G. Baldwin by Kathleen Kay In the last decade, systematic I am just completing a one-year studies have shown that a surprising National Parks Ecological Research diversity of western North American Postdoctoral Fellowship under the di- flowering plants gave rise to import- rection of Jepson Curator and Integra- ant elements of Hawaii’s native flora. tive Biology Professor Bruce Baldwin. Tarweeds (Madia and relatives), sani- This fellowship program was funded cles (Sanicula), violets (Viola), hedge by the Andrew W. Mellon Foundation nettles (Stachys), and, probably, cam- and administered by the National Park pions (Silene) are among the groups Foundation and the Ecological Society familiar to California botanists that of America with the purpose of expand- have spawned impressive radiations ing research into plants in the U.S. Na- of Hawaiian plants following ancient, tional Parks. This program has funded long-distance dispersal from North 20 fellows since 2000 studying a broad America. The idea that bird-mediated range of topics, such as the top-down dispersal of flowering plants could Willis Linn Jepson’s effects of wolves and large herbivores occur across such a vast oceanic bar- Field Books on the aspens of Yellowstone, the eco- rier (~3,500 km) was rejected by such physiology of invasive plants in Hawaii th eminent early 20 Century botanists Now Online! Volcanoes, and a survey of mosses and as Carl Skottsberg, as was the notion by Richard L. Moe lichens in Acadia. that highly distinctive Hawaiian gen- My study is focused on the era, such as those of the Hawaiian The University and Jepson evolutionary diversification of the silversword alliance (Argyr-oxiphium, Herbaria house, in addition to 2.2 mil- California clarkias, and I worked at Dubautia, and Wilkesia) and Hawaiian lion plant specimens, a great deal of various sites in Point Reyes National mints (Haplostachys, Phyllostegia, archival material related to the collec- Seashore and the Golden Gate National and Stenogyne), could have evolved tions. This material includes notebooks, Recreation Area, as well as a few sites since the rise of the modern high is- lists, photographs, maps, letters, and outside of these parks. This is a group lands of the Hawaiian chain. Instead, manuscripts. Most botanical collectors endemic Hawaiian genera were once maintain an account of the specimens Continued on page 2. widely perceived as relicts that came that they have collected in a field book. to be restricted to the islands by sub- Some field books are hardly more than ALSO IN THIS ISSUE sidence and submergence of ancient simple lists of numbers and names. continental connections between the Others are elaborate diaries that include New TJM2 treatments online islands (and those of French Polyne- detailed itineraries, descriptions of Digitizing Types, New Funding sia) to Asia, Australia, and even South surroundings, accounts of places and America (via Antarctica). Although people, and memoranda. Georeferencing, New Funding Continued on page 6. Continued on page 4. of approximately 40 annual plant in trade-offs between growth and repro- species, most of which are endemic to duction under both benign and drought TJM2 treatments posted the California Floristic Province. They conditions and how those trade-offs since December 2008 generally grow on well-drained slopes, relate to the climatic conditions where http://ucjeps.berkeley.edu/jeps- have pretty pink flowers, and are one each species lives. This greenhouse onmanual/review/ of the last plants to flower as California project is a collaboration with Kjell dries up for the summer months, hence Bolmgren, a postdoctoral fellow in Agavaceae one of their common names, “farewell- Professor David Ackerly’s lab in Inte- Camassia, Hastingsia, Hespero- to-spring”. grative Biology. callis, Leucocrinum I have been interested in how The Jepson Herbarium has been Amaryllidaceae this group has diversified, both through a rewarding stop along my academic Amaryllis, Leucojum, Narcissus, the development of genetic barriers path, providing a friendly and collegial Pancratium among species and through adapting setting full of experts in all aspects of Anacardiaceae to a variety of habitats. Many closely plant biology. I came here after com- Malosma, Pistacia, Rhus, Schi- related plant species show differences in pleting my B.S. at UC Davis and my nus, Toxicodendron the arrangement of their chromosomes, Ph.D. at Michigan State University, and Caprifoliaceae and these differences generally confer now I’m leaving to start an assistant Lonicera, Symphoricarpos strong sterility barriers, but it is not well professorship at UC Santa Cruz, where Caryophyllaceae (entire family) understood how these different arrange- I will continue studying diversification Ceratophyllaceae ments get established in the first place. I processes in California plants. Ceratophyllum have been using Clarkia amoena from Cornaceae the California Coast Range, which Cornus has a lot of within-species variation in Ephedraceae chromosome arrangement, as a system Ephedra in which to examine the fitness conse- Menyanthaceae quences of rearrangements before they Menyanthes, Nymphoides become fixed between divergent spe- Nymphaeaceae cies. Across the genus Clarkia, species Nuphar, Nymphaea differ in their habitat affinity and their Ruscaceae life history strategies – their schedule Maianthemum of growth and flowering. To better Santalaceae understand these differences, I set up a Comandra greenhouse study of seventeen species Scheuchzeriaceae of Clarkia from all over California to Scheuchzeria examine genetically-based differences Greenhouse experiment Field site in Point Reyes Clarkia amoena from Point Reyes 2 New Funding for the Consortium of California Herbaria Global Biodiversity Andrew W. Mellon Foundation Information Facility The Andrew W. Mellon Foundation has generously funded the effort to database and image type specimens of vascular plants and cryp- In December 2007, the Con- togamic groups collected from around the world. The University and sortium of California Herbaria Jepson Herbaria will digitize type specimens from herbaria in northern received funding to georeference California (except the California Academy of Sciences) and Rancho Santa approximately 49,000 records from Anna Botanic Garden will digitize types from herbaria in southern Cali- collections in California and data- fornia. base approximately 8,800 specimens The first phase of funding provided to UC/JEPS will support of non-native plant taxa that are digitization of 7,500 Latin American types held in the collection. The data housed in the herbarium of the Cal- will become part of LAPI, the Latin American Plant Initiative, an interna- ifornia Department of Food and Ag- tional partnership of herbaria working to create a coordinated database riculture. The project titled “GBIF of information and images of the plants of Latin America. data content development from the http://www.huh.harvard.edu/collections/lapi.html Consortium of California Herbaria: The second phase of funding will support imaging of ~18,350 type Advancing the international effort specimens from UC/JEPS, DAV, and CHSC and databasing of ~12,850 to monitor and control non-native type specimens from North America (excluding California) and the rest taxa” began this spring. Records of the world (excluding South America). from all Consortium partners will be georeferenced at the Jepson Herbar- ium (northern California counties) and Rancho Santa Ana Botanic Gar- den (southern California counties). The goal of the project is to document the presence and proliferation of non-native species in California and aid international tracking of invasive alien species. The resulting data will be made available to GBIF and included in the Consortium of California Herbaria (CCH) which is currently serving approximately 960,000 New staff member Kelly Ag- new, Bioinformatics Specialist, specimen records from seventeen shown with a herb scanner, a institutions (http://ucjeps.berkeley. customized scanning device edu/consortium). Ultimately, these developed at Kew Gardens. data will aid our understanding Notably, specimens are not in- of the number and distribution of verted when scanned (above). non-native taxa in California and how those taxa relate to others worldwide. Isotype of Abarema commutata (Fabaceae), collected by Bassett Maguire, Celia K. Maguire, and G. Wilson-Browne on Sept. 4 1961. Plants of the southern Pakaraima Mountains, British Guiana (now Guyana). 3 Field Books, continued from page 1. Willis Jepson, who kept field contemporary political books from 1895 to 1940, recorded geography and social botanical, biographic, geographic, and history. historical observations in fairly great In general, the detail. Jepson used uniform octavo field books document volumes (filling more than 60), mostly collecting trips, but of about 200 lined pages. The pages are Jepson did not have a handwritten in ink in a fairly legible strict routine for his hand. accounts. Usually the The labels on the specimens accounts begin with a that Jepson prepared were transcribed brief description of the from the field books. The books, how- itinerary followed by an ever, have information pertinent to itemization of the plants specimens that the labels lack ⎯ infor- seen
Recommended publications
  • Vegetative Anatomy of Dubautia, Argyroxiphiun1j And
    Vegetative Anatomy of Dubautia, Argyroxiphiun1J and If/ ilkesia (Compositae) 1 SHERWIN CARLQUIST2 BECAUS E Dubautia, Argyroxipbiam, and lVil­ 442) between Railliardella, a genus tradi­ kesia are endemic Hawaiian genera of uncer­ tionally placed in Senecioneae, and the Juan tain po sition within the Composit ae and are Fernandez Senecioneae Robinsonia and Rbetino­ characterized by species markedly different in dendron. Alth ough the systematic po sitions of habit, a more thorough knowledge of ana­ Argyroxiphimn and lVi/kesia have been in tomical structure in these genera and in doubt, they have been interpreted as belong­ putatively related genera is desirable. The pur­ ing to the tarweeds (Heliantheae, subrribe pose of this study is to explore the variation Madinae) by such authors as Hoffmann (1890: pattern of anatomical characters in vegetative 248). Hoffmann, however, places Dubautia organs of Dubauti«, Argyroxipbium, and lVil­ and Railliardia in the subtribe immediately kesia, and to suggest which of these appear to preceding Madinae, Galinsoginae. Skottsberg be important in indicating rel ationships (1931: 56; 1956: 211) finds Dubautia and among the genera and to other genera. The Railliardia possibly related to Robinsonia and data may also be helpful in outlining natural Rhetinodendron, as well as to a New Guinea groups within the genus Dubautia. genus of Senecioneae, Bracbionostylam. Kec k In formation concerning secondary xylem (1936: 8) agrees, alth ough he emphasizes the of Dubautia is included in a separate study relation of Dubautia to A rgyroxiphiu11l and (Carlquist, 1958). The peculiar leaves of lVilkesia, which he excludes from M adinae Argyroxipbium, and comparison of them with and places in Galinsoginae; and he suggests leaves of lVi/kesia, form the subj ect of an that Dubauti« (sensu lato), A rgyroxipbium, and earlier paper (Carlquist, 1957d ).
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Natural History of Hawaiian Native Plants
    SOME HELPFUL RESOURCES ABOUT NATIVE HAWAIIAN PLANTS NEW - nativeplants.hawaii.edu - over 200 detailed horticultural information and 100’s of photos of native plants for the landscape linked to nurseries growing native plants and their business information and plant inventory 1. MANUAL OF THE FLOWERING PLANTS OF HAWAI’I by Wagner, Herbst and Sohmer: Two Volumes. Technical but most complete. 2. IN GARDENS OF HAWAII by Marie Neal. Mostly about non- native plants but includes many natives as well. 3. PLANTS AND FLOWERS OR HAWAII by Sohmer and Gustafson. Easiest book to use with many color photos. Limited number of plants. 4. WEBSITE: http://www.botany.hawaii.edu/faculty/carr/natives.htm Most complete online resource with hundreds of pictures of native plants. Disadvantage for novice: all plants listed by scientific names. Provided by Dr. Carr of University of Hawai’i. LCC RESOURCES 1. Plants in the Hawaiian Environment is televised every semester starting in the 3rd week of August and 2nd week of January at 5:30 or 5:45 for 1 ¼ hour. Labs on Saturday mornings. 2. Website for the course can be found at: http://emedia.leeward.hawaii.edu/millen/bot130/ It contains about 200 pages with many graphics. 3. Native plant gardens with over 130 species and types of native plants. All are labeled and can be found at several sites on campus. 4. Seeds and cuttings of native plants available to groups interested in propagating them for teaching and conservation. 5. Shade house propagation center used for education and training. 1 NATURAL HISTORY OF HAWAIIAN NATIVE PLANTS Native White Hibiscus Koki’o ke’o ke’o Hibiscus arnottianus Hawaiian Plant and Ecology Unit 2 1.
    [Show full text]
  • Chloroplast DNA Evidence for a North American Origin of the Hawaiian
    Proc, Natl. Acad. Sci. USA Vol. 88, pp. 1840-1843, March 1991 Evolution Chloroplast DNA evidence for a North American origin of the Hawaiian silversword alliance (Asteraceae) (insular evolution/adaptive radiation/biogeography/long-distance dispersal/phylogenetics) BRUCE G. BALDWIN*t, DONALD W. KYHOS*, JAN DVORAKO, AND GERALD D. CARR§ Departments of *Botany and tAgronomy and Range Science, University of California, Davis, CA 95616; and §Department of Botany, University of Hawaii, Honolulu, HI 96822 Communicated by Peter H. Raven, November 30, 1990 (received for review August 1, 1990) ABSTRACT Chloroplast DNA restriction-site compari- sity, structural (4, 5), biosystematic (6), allozymic (7), and sons were made among 24 species of the Hawaiian silversword chloroplast DNA (cpDNA) (8) data indicate the silversword alliance (Argyroxiphium, Dubautia, and Wilkesia) and 7 species alliance originated from a single colonizing species. of North American perennial tarweeds in Adenothamnus, Ma- Carlquist (1) presented convincing anatomical evidence dia, Raillardella, and Railkrdiopsis (Asteraceae-Madiinae). indicating taxonomic alignment of the Hawaiian silversword These data and results from intergeneric hybridization indi- alliance with the almost exclusively herbaceous American cated surprisingly close genetic affinity of the monophyletic Madiinae or tarweeds. Gray (9) earlier suggested such affinity Hawaiian group to two diploid species of montane perennial for Argyroxiphium, which was disputed by Keck (10) based herbs in California, Madia bolanderi and Raillardiopsis muiri. on presumed morphological dissimilarities and the magnitude Of 117 restriction-site mutations shared among a subset of two of the oceanic barrier to migration. Herein, we compare or more accessions, more than one-fifth (25 mutations) sepa- cpDNA restriction sites between the silversword alliance and rated the silversword alliance, M.
    [Show full text]
  • Wood Anatomy of Duhautia (Asteraceae: Madiinae) in Relation to Adaptive Radiation 1
    Pacific Science (1998), vol. 52, no. 4: 356-368 © 1998 by University of Hawai'i Press. All rights reserved Wood Anatomy of Duhautia (Asteraceae: Madiinae) in Relation to Adaptive Radiation 1 SHERWIN CARLQUIST2 ABSTRACT: Qualitative and quantitative features are reported for stem wood of 13 collections of 12 species of the Hawaiian genus Dubautia. Although the species share a basic wood plan, quantitative expressions range widely, espe­ cially with respect to vessel element dimensions, vessel density, vessel grouping, length of libriform fibers, and dimensions of multiseriate rays. Ecology and habit explain most of the diversity. Variations in the ratio between vessel ele­ ment length and libriform fiber length are correlated with habit both within Dubautia and when Dubautia is compared with Argyroxiphium and Wilkesia. Other variation in wood is related mostly to ecology. The Dubautia species of wet forest have high mesomorphy ratio values. Low mesomorphy ratio values occur in species of recent or dry lava (e.g., D. scabra) or dry alpine areas (D. menziesii); mesomorphy ratio values in the xeric species are comparable with those in Argyroxiphium. Highly xeromorphic wood in the bog species D. waia­ lealae may reflect recent immigration from a dry habitat or peculiar features of the bog habitat. The lianoid D. lati/olia has notably xeromorphic wood, which may reflect recent entry into wet forest or else the tendency for lianas in general to have xeromorphic features that confer conductive safety. All species of Dubautia show fiber dimorphism. Dubautia is a superb example of adaptive radiation, in contrast to the Hawaiian Schiedea (Caryophyllaceae), which has shifted into various habitats with little change in wood anatomy, or the Galapagos genus Scalesia, all species of which must survive periods of drought and have xeromorphic wood.
    [Show full text]
  • Herbivorous Insects and the Hawaiian Silversword Alliance: Coevolution Or Cospeciation?L
    Pacific Science (1997), vol. 51, no. 4: 440-449 © 1997 by University of Hawai'i Press. All rights reserved Herbivorous Insects and the Hawaiian Silversword Alliance: Coevolution or Cospeciation?l GEORGE K. RODERICK2 ABSTRACT: Numerous groups of herbivorous insects in the Hawaiian archipelago have undergone adaptive radiations. R. C. L. Perkins collected and documented species in nearly all of these groups. In this study I tested whether patterns of host plant use by herbivorous insects can be explained by host plant history. I examined a group ofinsects in the planthopper genus Nesosydne (Hemiptera: Delphacidae) that feed on plants in the Hawaiian silversword alliance, many of which are endangered or threatened. For these Nesosydne species feeding on the silversword alliance, mitochondrial DNA sequence data revealed a statistically significant pattern of cospeciation between these insects and their hosts. These planthoppers are highly host-specific, with each species feeding on only one, or a few closely related, plant species. Patterns ofhost plant use across the plant lineage, as well as within extensive hybrid zones between members of the silversword alliance, suggest that planthopper diversification parallels host plant diversification. Data collected thus far are consis­ tent with, but do not directly demonstrate, reciprocal adaptation. For other herbivo­ rous insects associated with members of the Hawaiian silversword alliance, patterns of host plant use and evolutionary history are not yet well understood. However, cospeciation appears not to be universal. For example, endemic flies in the family Tephritidae (Diptera) are less host-specific and demonstrate host-switching. Research is under way to reveal the mechanisms associated with cospeciation and host­ switching for different insect groups associated with the Hawaiian silversword alliance.
    [Show full text]
  • THE STATUS of the MAUNA KEA SILVERSWORD Gerald D. Carr And
    34 THE STATUS OF THE MAUNA KEA SILVERSWORD Gerald D. Carr and Alain Meyrat Department of Botany University of Hawaii 3190 Maile Way Honolulu, Hawaii 96822 The Mauna Kea silversword was first brought to the attention of the scientific community through the efforts of Scottish botanist James M~crae. Macrae ascended Mauna Kea from Laupahoehoe in 1825 and at a point near the summit, after walking three miles over sandy pulverized lava, noted, "The last mile was destitute of vegetation except one plant of the Syginesia tribe, in growth much like a Yucca, with sharp pointed silver cou1oured leaves and green upright spike of three or four feet producing pendulous branches with br9wn flowers, truly superb, and almost worth the journey of coming here to s~e it on purpose" (Wilson 1922, p. 54). Specimens of t;hese 'truly superb' plants reached De Candolle and in 1836 were christened Argyroxiphium sandwicense DC. Early in 1834, David Douglas ascended Mauna Kea and observed the same species, specimens of which reached W. J. Hooker and were initially given the name Argyrophyton douglasii Hook. (1837a.), but Hooker very soon a.ccepted De Candolle's earlier name for the taxon (Hooker 1837b). ,The species was again collected on Mauna Kea by Charles Pickering in 1841 as part of the U. S. South Pacific Exploring Expedition (cf. Pickering 1876, Keck 1936). Pickering also collected material he presumed to belong to the Same taxon on Haleakala, Maui, but this was considered distinct by Asa Gray and was named Argyroxiphium macrocephalum (cf. Gray 1852, Pickering 1876). Both Pickering and Douglas observed Argyroxiphium on Mauna Loa and Mauna Kea, Hawai'i and considered them to be the same taxon (Pickering 1876, Wilson 1922).
    [Show full text]
  • Everywhere but Antarctica: Using a Super Tree to Understand the Diversity and Distribution of the Compositae
    BS 55 343 Everywhere but Antarctica: Using a super tree to understand the diversity and distribution of the Compositae VICKI A. FUNK, RANDALL J. BAYER, STERLING KEELEY, RAYMUND CHAN, LINDA WATSON, BIRGIT GEMEINHOLZER, EDWARD SCHILLING, JOSE L. PANERO, BRUCE G. BALDWIN, NURIA GARCIA-JACAS, ALFONSO SUSANNA AND ROBERT K. JANSEN FUNK, VA., BAYER, R.J., KEELEY, S., CHAN, R., WATSON, L, GEMEINHOLZER, B., SCHILLING, E., PANERO, J.L., BALDWIN, B.G., GARCIA-JACAS, N., SUSANNA, A. &JANSEN, R.K 2005. Everywhere but Antarctica: Using a supertree to understand the diversity and distribution of the Compositae. Biol. Skr. 55: 343-374. ISSN 0366-3612. ISBN 87-7304-304-4. One of every 10 flowering plant species is in the family Compositae. With ca. 24,000-30,000 species in 1600-1700 genera and a distribution that is global except for Antarctica, it is the most diverse of all plant families. Although clearly mouophyletic, there is a great deal of diversity among the members: habit varies from annual and perennial herbs to shrubs, vines, or trees, and species grow in nearly every type of habitat from lowland forests to the high alpine fell fields, though they are most common in open areas. Some are well-known weeds, but most species have restricted distributions, and members of this family are often important components of 'at risk' habitats as in the Cape Floral Kingdom or the Hawaiian Islands. The sub-familial classification and ideas about major patterns of evolution and diversification within the family remained largely unchanged from Beutham through Cronquist. Recently obtained data, both morphologi- cal and molecular, have allowed us to examine the distribution and evolution of the family in a way that was never before possible.
    [Show full text]
  • Plant Water Deficits, Osmotic Properties, and Hydraulic Resistances of Hawaiian Dubautia Species from Adjacent Bog and Wet-Forest Habitats!
    Pacific Science (1990), vol. 44, no. 4: 449-455 © 1990 by University of Hawaii Press. All rights reserved Plant Water Deficits, Osmotic Properties, and Hydraulic Resistances of Hawaiian Dubautia Species from Adjacent Bog and Wet-Forest Habitats! JOAN E. CANFIELD 2 ABSTRACT: Functional responses oftwo closely related Dubautia species from a mosaic of Hawaiian bogs and wet forest were compared to help explain their differential distributions. Dubautia paleata is largely restricted to saturated bogs, while D. raillardioides is restricted to the surrounding, better-drained wet forest. Minimum diurnal tissue water potentials of D. paleata are significantly lower than those of D. raillardioides, despite the moister condition of bog soil. The tissue osmotic potential at full hydration (nJ of D. paleata is significantly lower than that of D. raillardioides. As a result , the tissue water potential at which turgor reaches zero for D. paleata is significantly lower than that of D. raillardioides. Dubautia paleata is thus able to maintain positive turgor to lower water poten­ tials than D. raillardioides. Lack ofa lowered n, in D. raillardioides may therefore contribute to exclusion of that species from the bog habitat. Preliminary data suggest a significantly greater hydraulic resistance for D. paleata than for D. raillardioides, probably due to higher root resistance caused by the reduced condition of the waterlogged bog substrate. The difference in hydraulic resis­ tance could help account for the contrasting water deficits of the two species. As ONE OF THE WETTEST terrestrial habitats, creating sucstantial hydraulic resistance in bogs would not be expected to cause substan­ bog plants (Marchand 1975, Bradbury and tial tissue water deficits in plants.
    [Show full text]
  • Phylogenies and Secondary Chemistry in Arnica (Asteraceae)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 392 Phylogenies and Secondary Chemistry in Arnica (Asteraceae) CATARINA EKENÄS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7092-0 2008 urn:nbn:se:uu:diva-8459 !"# $ % !& '((" !()(( * * * + , - . , / , '((", + 0 1# 2, # , 34', 56 , , 70 46"84!855&86(4'8(, - 1# 2 . * 9 10-2 . * . # 9 , * * 1 ! " #! !$ 2 1 2 .8 # * * :# 77 1%&'(2 . !6 '3, + . .8 ) / , ; < * . * ** # , * * * , 09 * . # * * 33 * != , 0- # 9 * * 1, , * 2 . * , 0 * * * * * . * , $ * 0- * % # , # 8 * * * * * * $8> # . * * !' , * * . ** , ? . 0- , +,- # # 7-0 -0 :+' 9 +# $8> ./0) . ) 1 ) 2 * 3) ) .456(7 ) , @ / '((" 700 !=5!8='!& 70 46"84!855&86(4'8( ) ))) 8"&54 1 );; ,/,; A B ) ))) 8"&542 List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals: I Ekenäs, C., B. G. Baldwin, and K. Andreasen. 2007. A molecular phylogenetic
    [Show full text]
  • 9:00 Am PLACE
    CARTY S. CHANG INTERIM CHAIRPERSON DAVID Y. IGE BOARD OF LAND AND NATURAL RESOURCES GOVERNOR OF HAWAII COMMISSION ON WATER RESOURCE MANAGEMENT KEKOA KALUHIWA FIRST DEPUTY W. ROY HARDY ACTING DEPUTY DIRECTOR – WATER AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMISSION ON WATER RESOURCE MANAGEMENT STATE OF HAWAII CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT DEPARTMENT OF LAND AND NATURAL RESOURCES ENGINEERING FORESTRY AND WILDLIFE HISTORIC PRESERVATION POST OFFICE BOX 621 KAHOOLAWE ISLAND RESERVE COMMISSION LAND HONOLULU, HAWAII 96809 STATE PARKS NATURAL AREA RESERVES SYSTEM COMMISSION MEETING DATE: April 27, 2015 TIME: 9:00 a.m. PLACE: Department of Land and Natural Resources Boardroom, Kalanimoku Building, 1151 Punchbowl Street, Room 132, Honolulu. AGENDA ITEM 1. Call to order, introductions, move-ups. ITEM 2. Approval of the Minutes of the June 9, 2014 N atural Area Reserves System Commission Meeting. ITEM 3. Natural Area Partnership Program (NAPP). ITEM 3.a. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $663,600 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Kapunakea Preserve Long Range Management Plan, TMK 4-4-7:01, 4-4-7:03, Lahaina, Maui. ITEM 3.b. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $470,802 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Pelekunu Long Range Management Plan, TMK 5-4- 3:32, 5-9-6:11, Molokai.
    [Show full text]
  • Origin and Evolution of Hawaiian Endemics: New Patterns Revealed by Molecular Phylogenetic Studies
    4 Origin and evolution of Hawaiian endemics: new patterns revealed by molecular phylogenetic studies S t e r l i n g C . K e e l e y a n d V i c k i A . F u n k The current high islands of the Hawaiian archipelago are among the most remote land masses in the world. They lie 3500 km from California, the nearest contin- ental source, and approximately 2300 km from the Marquesas , the nearest islands ( Fig. 4.1 ). They are the southernmost islands in the Hawaiian Ridge , formed succes- sively over a ‘hot spot’ that has allowed magma to penetrate the Pacifi c Plate. The plate has moved gradually north and northwestwards over the past 85 Ma, leaving the previously formed islands to gradually erode and subside (Clague, 1996 ). The current high islands ( Fig. 4.1 , inset) range in age from Kauai /Niihau (5.1–4.9 Ma), to Oahu (3.7–2.6 Ma), to Maui Nui (2.2–1.2 Ma), during the Pleistocene compris- ing several islands – West Maui (1.3 Ma), East Maui (0.75 Ma), Molokai (1.76–1.90 Ma), Lanai (1.28 Ma) and Kaho’olawe (1.03 Ma) – and Hawaii (0.5 Ma to present) (Price & Clague, 2002 ). Important for the establishment and evolution of the extant Hawaiian fl ora is the historic pattern of island formation within the archipelago. For example, islands with elevations greater than 1000 m did not exist from 30 to 23 Ma and from c . 8 to 5 Ma when the current high islands began to emerge (Clague, 1996 ; Price & Clague, 2002 ; Clague et al ., 2010 ).
    [Show full text]