Cultivation of Lentinus Squarrosulus and Pleurotus Ostreatus on Cassava Bagasse Based Substrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungi Causing Decay of Living Oaks in the Eastern United States and Their Cukural Identification
TECHNICAL BULLETIN NO. 785 • JANUARY 1942 Fungi Causing Decay of Living Oaks in the Eastern United States and Their Cukural Identification By ROSS W. DAVIDSON Associate Mycologist W. A. CAMPBELL Assistant Pathologist and DOROTHY BLAISDELL VAUGHN Formerly Junior Pathologist Division of Forest Pathology Bureau of Plant Industry UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. For sale by the Superintendent of Documents, Washington, D. C. • Price 15 cents Technical Bulletin No. 785 • January 1942 Fungi Causing Decay of Living Oaks in the Eastern United States and Their Cul- tural Identification^ By Ross W. DAVIDSON, associate mycologist, W. A. CAMPBELL,^ assistant patholo- gist, and DOROTHY BLAISDELL VAUGHN,2 formerly junior pathologist, Division of Forest Pathology, Bureau of Plant Industry CONTENTS Page Page Introduction 2 Descriptions of oak-decaying fungi in culture- Factors aflecting relative-prevalence figures for Continued. decay fungi 2 Polyporus frondosus Dicks, ex Fr. 31 Methods of sampling 2 Polyporus gilvus Schw. ex Fr. 31 Identification and isolation difläculties 3 Polyporus graveolens Schw. ex Fr. 33 Type of stand 4 Polyporus hispidus Bull, ex Fr. 34 Identification of fungi isolated from oak decays - 4 Polyporus lucidus Leyss. ex. Fr. ' 36 Methods used to identify decay fungi 5 Polyporus ludovicianus (Pat.) Sacc. and The efíect of variation on the identification Trott 36 of fungi by pure-culture methods 8 Polyporus obtusus Berk. 36 Classification and file system 9 Polyporus pargamenus Fr. _ 37 Key to oak-decaying fungi when grown on malt Polyporus spraguei Berk, and Curt. 38 agar 11 Polyporus sulpjiureus Bull, ex FT. _ 38 Descriptions of oak-decaying fungi in culture _ _ 13 Polyporus versicolor L, ex Fr. -
Optimization of Agro-Residues As Substrates for Pleurotus
Wu et al. AMB Expr (2019) 9:184 https://doi.org/10.1186/s13568-019-0907-1 ORIGINAL ARTICLE Open Access Optimization of agro-residues as substrates for Pleurotus pulmonarius production Nan Wu1†, Fenghua Tian1†, Odeshnee Moodley1, Bing Song1, Chuanwen Jia1, Jianqiang Ye2, Ruina Lv1, Zhi Qin3 and Changtian Li1* Abstract The “replacing wood by grass” project can partially resolve the confict between mushroom production and balancing the ecosystem, while promoting agricultural economic sustainability. Pleurotus pulmonarius is an economically impor- tant edible and medicinal mushroom, which is traditionally produced using a substrate consisting of sawdust and cottonseed hulls, supplemented with wheat bran. A simplex lattice design was applied to systemically optimize the cultivation of P. pulmonarius using agro-residues as the main substrate to replace sawdust and cottonseed hulls. The efects of difering amounts of wheat straw, corn straw, and soybean straw on the variables of yield, mycelial growth rate, stipe length, pileus length, pileus width, and time to harvest were demonstrated. Results indicated that a mix of wheat straw, corn straw, and soybean straw may have signifcantly positive efects on each of these variables. The high yield comprehensive formula was then optimized to include 40.4% wheat straw, 20.3% corn straw, 18.3% soybean straw, combined with 20.0% wheat bran, and 1.0% light CaCO3 (C/N 42.50). The biological efciency was 15.2% greater than that of the control. Most encouraging was the indication= that the high yield comprehensive formula may shorten the time to reach the reproductive stage by 6 days, compared with the control. -
A New Benzoquinone and a New Benzofuran from the Edible
Food Chemistry 141 (2013) 1614–1618 Contents lists available at SciVerse ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem A new benzoquinone and a new benzofuran from the edible mushroom Neolentinus lepideus and their inhibitory activity in NO production inhibition assay ⇑ ⇑ Yongxia Li a,b,1, Li Bao a,1, Bin Song c, Junjie Han b, Heran Li b, , Feng Zhao d, Hongwei Liu a, a State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 9, Beiertiao, Zhongguancun, Haidian District, Beijing 100190, People’s Republic of China b College of Pharmacy, Soochow University, No. 199, Ren Ai Rd., Suzhou Industrial Park, Suzhou, People’s Republic of China c Guangdong Institute of Microbiology, Guangdong Academy of Sciences, No. 100, Xianlie Road, Yuexiu District, Guangdong 510070, People’s Republic of China d School of Pharmacy, Yantai University, No. 32, Qingquan Road, Laishan District, Yantai 264005, People’s Republic of China article info abstract Article history: The fruiting bodies or mycelia of mushrooms have been used as food and food-flavoring material for cen- Received 16 October 2012 turies due to their nutritional and medicinal value and the diversity of their bioactive components. The Received in revised form 21 February 2013 present research is the first to investigate the bioactive secondary metabolites from the solid culture of Accepted 30 April 2013 the edible mushroom Neolentinus lepideus. Two new secondary metabolites, 5-methoxyisobenzofuran- Available online 23 May 2013 4,7(1H,3H)-dione (1) and 1,3-dihydroisobenzofuran-4,6-diol (2), as well as seven known compounds including one benzoquinone derivative (3) and six cinnamic acid derivatives (4–9) were obtained. -
Biological Species Concepts in Eastern North American Populations of Lentinellus Ursinus Andrew N
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1997 Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus Andrew N. Miller Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Miller, Andrew N., "Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus" (1997). Masters Theses. 1784. https://thekeep.eiu.edu/theses/1784 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates {who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Andrew N. Miller u~l.ff~ Author Date 7 I respectfully request Booth Library of Eastern Illinois University not allow my thesis to be reproduced because: Author Date Biological species concepts in eastern North American populations of Lentinellus ursinus (TITLE) BY Andrew N. -
Oyster Mushroom) Related with Its Chemical Composition: a Review on the Past Decade Findings
Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings Rúbia Carvalho Gomes Corrêaa,b,c, Tatiane Brugnaric, Adelar Brachtc, Rosane Marina Peraltac, Isabel C.F.R. Ferreiraa,* aMountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal. bCAPES Foundation, Ministry of Education of Brazil, 70.040-020, Brasília, DF, Brazil. cState University of Maringá, Department of Biochemistry, 87020-900, Maringá, PR, Brazil. * Author to whom correspondence should be addressed (Isabel C.F.R. Ferreira; e-mail: [email protected]; telephone +351-273-303219; fax +351-273-325405). 1 Abstract Background: The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites, several of them with biological activities. The genus Pleurotus is a cosmopolitan group of mushrooms with high nutritional value and therapeutic properties, besides a wide array of biotechnological and environmental applications. Scope and approach: The present report aims to provide a critical review on aspects related to chemical compounds isolated from the genus Pleurotus with possible biotechnological, nutritional and therapeutic uses. Investigations on the genus have immensely accelerated during the last ten years, so that only reports published after 2005 have been considered. Key findings and conclusions: The most important Pleurotus species cultivated in large scale are P. ostreatus and P. pulmonarius. However, more than 200 species have already been investigated to various degrees. Both basidiomata and mycelia of Pleurotus are a great renewable and easily accessible source of functional foods/nutraceuticals and pharmaceuticals with antioxidant, antimicrobial, anti- inflammatory, antitumor and immunomodulatory effects. -
Transcriptional and Enzymatic Profiling of Pleurotus Ostreatus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Academica-e Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures Raúl Castanera,a Gúmer Pérez,a Alejandra Omarini,a Manuel Alfaro,a Antonio G. Pisabarro,a Vincenza Faraco,b,c Antonella Amore,b and Lucía Ramíreza Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Spaina; Department of Organic Chemistry and Biochemistry, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italyb; and School of Biotechnological Sciences, University of Naples Federico II, Naples, Italyc The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we ex- amined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) Downloaded from and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse tran- scription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an addi- tional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. -
Structural Characterization and Biological Activity of Lactarius Scrobiculatus
Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic Thesis for the Master´ degree in Pharmacy 45 study points Department of Pharmaceutical Chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO November/2018 II Structural characterization and biological activity of Lactarius scrobiculatus Thesis for Master´ degree in Pharmacy Department for Pharmaceutical chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences University in Oslo Ivana Tomic November 2018 Supervisor: Anne Berit Samuelsen III © Author 2018 Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic http://www.duo.uio.no/ Print: Reprosentralen, Universitetet i Oslo IV Acknowledgments The present thesis was carried out at the Departement of Pharmaceutical Chemistry, University of Oslo (UiO), for the Master´s degree in Pharmacy at the University of Oslo. The other institute include Norwegian Centre of Molecular Medicine, where I have performed activity assay. First and foremost, I would like to thank to my supervisor Anne Berit Samuelsen for hers support and guidance throughout my work and useful comments during the writing. Further, I also want to thank Hoai Thi Nguyen and Cristian Winther Wold for help with carrying out GC and GC-MS analysis. Also, I am very thankful to Karl Malterud for help with NMR analysis. Special thanks to Suthajini Yogarajah for her patience and lab support. I would also like to thank to Kari Inngjerdingen for good and helpful Forskningforberedende kurs. My gratitude goes also to Prebens Morth group at NMCC, special to Julia Weikum and Bojana Sredic, who were always kind and helpful. Finally, I would like to express my fabulous thanks to my wonderful parents, my husband and my four sons for their great patience, sacrifice, moral support and encouragement during my master thesis. -
Names, Names, Names: When Nomenclature Meets Molecules Ron Petersen and Karen Hughes*
22 McIlvainea Volume 18, Number 1, 2009 23 Names, Names, Names: When Nomenclature Meets Molecules Ron Petersen and Karen Hughes* IN EASTERN North America, the Appalachian in point: for years it was assumed that Amanita cae- Mountains have their southern origin in northern sarea (Caesar’s mushroom; Fig. 1A) occurred in the Georgia, and extend to the northeast to Maine, a Smokies. Confronted with our mushroom in 1968, distance of over 3200 kilometers. Although not Marinus Donk and Roger Heim, with deep expe- as spectacular as other ranges (i.e. Alps, Himalaya, rience in Old World tropics (Indonesia and New Andes, Rockies, etc.), their height (up to 2250 m) Caledonia), told us that our species was, in fact, A. combined with their longitudinal range provide a hemibapha (Fig. 2A), with which they were familiar. host of ecological niches. Glaciation of the north- Creating further confusion: Vassilieva described A. ern portion of the range 10- to 20,000 years ago caesarioides (Fig. 2B) from far eastern Russia. Finally, produced climatic conditions which forced the we have come to call our version of Caesar’s mush- forest flora to colonize farther south into more room A. jacksonii (Fig. 1B). hospitable climatic refugia, taking its fungi with it But if such confusion is possible over such a and eventually to recolonize northward once the sensational mushroom, what other surprises could glaciers receded. The conifers of the Canadian lurk over other, more arcane worldwide mimics? Shield still can be found at high elevation as far While herbarium specimens can be (and have south as Tennessee (N 37o). -
Taxonomy, Phylogeny, Cultivation and Biological Activities of a Lentinus Species from Andaman & Nicobar Islands (India)
Emirates Journal of Food and Agriculture. 2015. 27(7): 570-576 doi: 10.9755/ejfa.2015.04.135 http://www.ejfa.me/ REGULAR ARTICLE Taxonomy, Phylogeny, Cultivation and Biological Activities of a Lentinus species from Andaman & Nicobar Islands (India) Ved Parkash Sharma, Shwet Kamal*, Ramesh Chandra Upadhyay, Satish Kumar, Sanjeev Kumar Sanyal, Manjit Singh ICAR-Directorate of Mushroom Research, Chambaghat, Solan, (HP) – 173213, India ABSTRACT Fruit bodies of Lentinus were collected from subtropical climate of Andaman & Nicobar Islands (India). Pure culture was prepared by tissue culture on Malt-extract-agar (MEA) medium at 25±2°C. The specimen was studied for its identification, taxonomy and phylogeny and identified as Lentinus sajor-caju by morphological and microscopical studies. The identification was confirmed through ITS 5.8S rDNA sequencing and sequence analysis. Its cultivation was done on saw dust and wheat bran. The fruit bodies were obtained at a temperature of 28±2°C and 80-85% RH. The cultivated Lentinus sajor-caju fruit bodies were analysed for nutritional and biological properties and observed that the cultivated mushroom has good nutritional properties and antioxidant, reducing and DPPH free radical scavenging properties are comparable to commercially cultivated Lentinula edodes strains. Keywords: Mushroom; Lentinus sajor-caju; Taxonomy; Phylogeny; Cultivation; Nutrition INTRODUCTION December 2009 at a geographical location of Latitude: 12°01’N; Longitude: 092°98’E and temperature of Species of Lentinus are normally wood-decaying 25-28°C. The specimen was taxonomically identified on the basidiomycetes and have decurrent lamellae, dimitic basis of morphology as Lentinus species. The detailed study tissues in the basidiome, and hyaline, ellipsoid to cylindric of the specimen was undertaken considering a Lentinus spores. -
Pleurotus, and Tremella
J, Pharmaceutics and Pharmacology Research Copy rights@ Waill A. Elkhateeb et.al. AUCTORES Journal of Pharmaceutics and Pharmacology Research Waill A. Elkhateeb * Globalize your Research Open Access Research Article Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella Waill A. Elkhateeb1* and Ghoson M. Daba1 1 Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. *Corresponding Author: Waill A. Elkhateeb, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. Received date: February 13, 2020; Accepted date: February 26, 2021; Published date: March 06, 2021 Citation: Waill A. Elkhateeb and Ghoson M. Daba (2021) Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella J. Pharmaceutics and Pharmacology Research. 4(2); DOI: 10.31579/2693-7247/29 Copyright: © 2021, Waill A. Elkhateeb, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Fungi generally and mushrooms secondary metabolites specifically represent future factories and potent biotechnological tools for the production of bioactive natural substances, which could extend the healthy life of humanity. The application of microbial secondary metabolites in general and mushrooms metabolites in particular in various fields of biotechnology has attracted the interests of many researchers. This review focused on Lentinus, Pleurotus, and Tremella as a model of edible mushrooms rich in therapeutic agents that have known medicinal applications. Keyword: lentinus; pleurotus; tremella; biological activities Introduction of several diseases such as cancer, hypertension, chronic bronchitis, asthma, and others [14, 15]. -
Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus Sp.)
FOLIA HORTICULTURAE Folia Hort. 30(2), 2018, 191-201 Published by the Polish Society DOI: 10.2478/fhort-2018-0012 for Horticultural Science since 1989 REVIEW Open access www.foliahort.ogr.ur.krakow.pl Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.) Iwona Golak-Siwulska, Alina Kałużewicz*, Tomasz Spiżewski, Marek Siwulski, Krzysztof Sobieralski Department of Vegetable Crops Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences Dąbrowskiego 159, Poznań, Poland ABSTRACT There are about 40 species in the Pleurotus genus, including those with high economic significance, i.e. P. ostreatus and P. pulmonarius. The fruiting bodies of oyster mushrooms are of high nutritional and health- promoting value. In addition, many species belonging to the Pleurotus genus have been used as sources of substances with documented medicinal properties, such as high-molecular weight bioactive compounds (polysaccharides, peptides and proteins) and low-molecular weight compounds (terpenoids, fatty acid esters and polyphenols). The bioactive substances contained in the mycelium and fruiting bodies of Pleurotus species exhibit immunostimulatory, anti-neoplastic, anti-diabetic, anti-atherosclerotic, anti-inflammatory, antibacterial and anti-oxidative properties. Their multidirectional positive influence on the human organism is the result of interaction of bioactive substances. Extracts from individual Pleurotus species can be used for the production of dietary supplements increasing the organism’s immunity. -
Short Title: Lentinus, Polyporellus, Neofavolus
In Press at Mycologia, preliminary version published on February 6, 2015 as doi:10.3852/14-084 Short title: Lentinus, Polyporellus, Neofavolus Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa Jaya Seelan Sathiya Seelan Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610, and Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia Alfredo Justo Laszlo G. Nagy Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610 Edward A. Grand Mahidol University International College (Science Division), 999 Phuttamonthon, Sai 4, Salaya, Nakorn Pathom 73170, Thailand Scott A. Redhead ECORC, Science & Technology Branch, Agriculture & Agri-Food Canada, CEF, Neatby Building, Ottawa, Ontario, K1A 0C6 Canada David Hibbett1 Biology Department, Clark University, 950 Main Street Worcester, Massachusetts 01610 Abstract: The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and Copyright 2015 by The Mycological Society of America. partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction.