Land-Use and Erosion Source Discrimination of Soil

Total Page:16

File Type:pdf, Size:1020Kb

Land-Use and Erosion Source Discrimination of Soil Land -use and erosion source discrimination of soil and[Title] carbon sources to the Logan and Albert rivers using Compound Specific Isotope Analysis Gary Hancock and Andy Revill CSIRO Land and Water Science Report 2/11 January 2011 CSIRO Land and Water Science Report series ISSN: 1834-6618 Copyright and Disclaimer © 2011 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important Disclaimer: CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Photograph: Description: An example of channel bank erosion in the mid-catchment region of the Albert river after the January 2008 flood event. Photographer: Tim Pietsch © 2008 CSIRO CONTENTS 1 INTRODUCTION................................................................................................. 1 1.1 Background............................................................................................................... 1 1.2 Compound specific δ13 C measurements as sediment tracers.................................. 2 1.3 Study site .................................................................................................................. 2 2 METHODS ..........................................................................................................3 2.1 Sample collection...................................................................................................... 3 2.2 Sample preparation and analysis ............................................................................. 5 3 RESULTS............................................................................................................6 3.1 Characterising soil sources....................................................................................... 6 3.2 Determining sediment sources ............................................................................... 11 3.2.1 Lower Logan River.............................................................................................. 11 3.2.2 Lower Albert River .............................................................................................. 15 3.2.3 Teviot Brook........................................................................................................ 16 4 CONCLUSIONS................................................................................................ 17 4.1 CSIA as a sediment source tracing technique........................................................ 17 4.2 Enhancement of sediment tracing capabilities ....................................................... 17 4.3 Value to CSIRO and wider...................................................................................... 18 5 ACKNOWLEDGMENTS.................................................................................... 18 REFERENCES ........................................................................................................... 19 APPENDIX ................................................................................................................. 20 iii EXECUTIVE SUMMARY The Compound Specific Isotope Analysis (CSIA) technique has been used to identify the sources of soil erosion contributing sediment to the Logan-Albert catchment. Soil samples were collected in January 2010 and used to assess the ability of the CSIA technique to discriminate probable sources of soil erosion. Fatty acid and bulk carbon δ13 C were measured. This study has built on a previous sediment tracing study undertaken in 2008 using fallout radionuclides and major/minor element geochemistry. It is found that surface soil from forest, pasture and cultivated land-uses are well discriminated using CSIA. Furthermore, sub-surface soil sources associated with channel bank erosion and exposed subsoils (gullies and hillslope scalds) occurring specifically in the mid-western Logan catchment could also be discriminated. The CSIA and bulk carbon δ13 C data were used in the IsoSource mixing model to estimate the erosion sources to sediment collected during the January 2008 flood. The results of this analysis were compared with results obtained using other sediment tracers. For the lower Logan River, the CSIA tracing results are consistent with fallout and element geochemistry tracing, with channel bank erosion being confirmed as the major sediment source. However, the significant contribution to Logan River sediment of exposed subsoils originating on hillslopes and drainage lines from the mid-western region of the Logan catchment has also been confirmed by CSIA. This erosion source was not quantified by catchment modelling. In the Albert River catchment about 50% of soil comes from forest land-use, although more than half of this soil comes from sub-surface sources. These results have demonstrated that the CSIA technique has the potential to significantly enhance the ability of CLW sediment tracing studies to determine the extent that different land-uses are contributing eroded soil to rivers, thus providing a check on catchment model predictions and/or a calibration of model parameters. In particular, sources of surface soil erosion in agricultural regions can now be distinguished from pristine forest hillslopes. Likewise, sub-surface soil sources such as river bank and gully erosion may also be distinguished. iv 1 INTRODUCTION 1.1 Background This report describes work designed to provide “proof of concept” for a new technique to discriminate eroded soil (and associated carbon) sources to rivers according to land-use in Australian catchments. The study entails the collection of characteristic soil and sediment samples from the Logan and Albert River catchments and their measurement by Compound Specific Isotope Analysis (CSIA). The CSIA technique measures the δ13 C isotope signature of specific organic compounds (in this case, fatty acids) associated with the organic matter bound to the soil/sediment. It is proposed that different land-uses will provide distinctive CSIA signatures due to the different types of vegetation which, on decomposition, make up the organic matter bound to soil particles. It is well known that various plants (e.g. grasses, shrubs, trees etc.) synthesise 13 C differently, leading to different δ13 C values for the vegetation of those plants. On decomposition of this vegetation the δ13 C values of the carbon compounds are retained and transferred to the soil. Thus, different plants (e.g. “C3” and “C4” plants) associated with different land-uses may allow the discrimination of land- uses and erosion processes contributing sediment to rivers and estuaries. A sediment sourcing study was recently been undertaken in the Logan-Albert catchment funded by the South-East Queensland Healthy Water Partnership and CSIRO Land and Water (Hancock and Caitcheon, 2010). The study used traditional radionuclide and major/minor element tracers, and provided new information on sediment sources and erosion processes. However, these tracers could not discriminate between different land-uses within the same geological province, in particular between the proportions of sediment originating from pasture, forest and cultivated regions. For example, in Table 1 below the tracers used by Hancock and Caitcheon (2010) identified surface soil erosion as contributing about 20% to river sediment, with exposed subsoils on hillslopes contributing 20-30%. Based on catchment modelling (SedNet, Caitcheon et al., 2001) channel bank erosion is assumed to contribute the remaining ~50%. However, the relative contributions of sub-surface soil sources (channel banks, exposed subsoils on hillslopes) are not well distinguished by surface tracers. Nor it is known where in the catchment the subsoil sources come from, and whether they are associated with pasture, forest and/or cultivated land-uses. The work outlined in this report investigates the ability of CSIA to characterise soils associated with specific land-uses, potentially providing improved discrimination of sediment and carbon sources to the Logan estuary. The work utilises the facilities and expertise of CMAR in Hobart (A. Revill, D. Holdsworth) where fatty acid extraction techniques and CSIA procedures are well established. 1 Table 1. Proportion (as %) of various erosion sources delivered as sediment to rivers, calculated using 137 Cs, excess 210 Pb and 7Be as tracers (Hancock and Caitcheon, 2010). River reach Reach description Reach Surface Recently Channel distance soil (%) exposed Bank (%) subsoil (%) Lower Logan Josephville to estuary ~40 km 10 ±3 40 ±10 50 ±10 Lower Albert Mundoolun to estuary ~40 km 15 ±3 30 ±10 55 ±10 Lower Teviot Boondah to Logan ~40 km 10 ±3 45 ±10 45 ±10 confluence 1.2 Compound specific δδδ13 C measurements as sediment tracers The CSIA method
Recommended publications
  • South East Queensland Floods January 2008
    South East Queensland Floods January 2008 1 2 3 1. Roads flood in Jimboomba - Photo from ABC website. User submitted Ben Hansen 2. Roads flood in Rathdowney - Photo from ABC website. 3. The Logan River floods at Dulbolla Bridge, reaching its peak in the morning of January 5, 2008. The river's banks burst … isolating the town of Rathdowney. Photo from ABC website. Note: 1. Data in this report has been operationally quality controlled but errors may still exist. 2. This product includes data made available to the Bureau by other agencies. Separate approval may be required to use the data for other purposes. See Appendix 1 for DNRW Usage Agreement. 3. This report is not a complete set of all data that is available. It is a representation of some of the key information. Table of Contents 1. Introduction ................................................................................................................................................... 2 Figure 1.0.1 Peak Flood Height Map for Queensland 1-10 January 2008.................................................. 2 Figure 1.0.2 Peak flood Height Map for South East Queensland 1-10 January 2008 ................................ 3 Figure 1.0.3 Rainfall Map of Queensland for the 7 Days to 7th January 2008 ............................................ 4 2. Meteorological Summary.......................................................................................................................... 5 2.1 Meteorological Analysis.......................................................................................................................
    [Show full text]
  • Item 3 Bremer River and Waterway Health Report
    Waterway Health Strategy Background Report 2020 Ipswich.qld.gov.au 2 CONTENTS A. BACKGROUND AND CONTEXT ...................................................................................................................................4 PURPOSE AND USE ...................................................................................................................................................................4 STRATEGY DEVELOPMENT ................................................................................................................................................... 6 LEGISLATIVE AND PLANNING FRAMEWORK..................................................................................................................7 B. IPSWICH WATERWAYS AND WETLANDS ............................................................................................................... 10 TYPES AND CLASSIFICATION ..............................................................................................................................................10 WATERWAY AND WETLAND MANAGEMENT ................................................................................................................15 C. WATERWAY MANAGEMENT ACTION THEMES .....................................................................................................18 MANAGEMENT THEME 1 – CHANNEL ..............................................................................................................................20 MANAGEMENT THEME 2 – RIPARIAN CORRIDOR .....................................................................................................24
    [Show full text]
  • Surface Water Ambient Network (Water Quality) 2020-21
    Surface Water Ambient Network (Water Quality) 2020-21 July 2020 This publication has been compiled by Natural Resources Divisional Support, Department of Natural Resources, Mines and Energy. © State of Queensland, 2020 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Summary This document lists the stream gauging stations which make up the Department of Natural Resources, Mines and Energy (DNRME) surface water quality monitoring network. Data collected under this network are published on DNRME’s Water Monitoring Information Data Portal. The water quality data collected includes both logged time-series and manual water samples taken for later laboratory analysis. Other data types are also collected at stream gauging stations, including rainfall and stream height. Further information is available on the Water Monitoring Information Data Portal under each station listing.
    [Show full text]
  • Condamine River Catchment, Qld
    HYDROCHEMICAL AND ISOTOPIC INDICATORS OF HYDROLOGICAL PROCESSES WITHIN COAL SEAM GAS FORMATIONS AND ADJACENT AQUIFERS, CONDAMINE RIVER CATCHMENT, QLD. Daniel Des Rex Owen BNatRes MSc (Research) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Earth, Environmental and Biological Sciences Science and Engineering Faculty Queensland University of Technology 2016 Keywords Aquifer interactions; Bromide; Carbon isotopes; Chloride; Coal seam gas; Coal bed methane; Compositional data analysis; Dissolved Organic Carbon; Hydrochemical indicator; Hydrogen isotopes; Inverse modelling; Isometric log ratios; Lithium; Major ions; Methane; Methanogenesis; Multivariate statistics; Sodium-bicarbonate groundwater; Stable isotopes of lithium; Stable isotopes of chlorine; Thermodynamic controls Hydrochemical and isotopic indicators of hydrological processes within coal seam gas formations and adjacent aquifers, Condamine River catchment, QLD. i Abstract In areas where a range of industries and economies rely on the extraction of water, aquifer connectivity can be a controversial issue and in some cases it may lead to water resource conflict- and management-challenges. Recently, the expansion of the coal seam gas industry has raised concerns about the risks to aquifers adjacent to gas-bearing aquifers because water needs to be extracted from the coal seams in order to release the sorbed gas. Consequently, there is a need to: a) understand aquifer connectivity in particular areas; and b) critique the effectiveness of different parameters that can be applied to understand interactions between coal seam gas formations and adjacent aquifers. This study provided a hydrochemical and isotopic assessment within and between a coal measure aquifer (the Walloon Coal Measures) that is being exploited for coal seam gas reserves, and a large, agriculturally- important alluvial aquifer (the Condamine River alluvium), in south east Queensland, Australia.
    [Show full text]
  • Policy 2009 Isaac River Sub-Basin Environmental Values and Water Quality Objectives Basin No. 1
    Environmental Protection (Water) Policy 2009 Isaac River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including all waters of the Isaac River Sub-basin (including Connors River) September 2011 Prepared by: Environmental Policy and Planning, Department of Environment and Heritage Protection © State of Queensland, 2011. Re-published in July 2013 to reflect machinery-of-government changes (departmental names, web addresses, accessing datasets), and updated reference sources. No changes have been made to environmental values or water quality objective numbers. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email [email protected].
    [Show full text]
  • ANPS Data Report No 6
    DARLING DOWNS Natural Features and Pastoral Runs 1827 to 1859 ANPS DATA REPORT No. 6 2017 DARLING DOWNS Natural Features and Pastoral Runs 1827 to 1859 Dale Lehner ANPS DATA REPORT No. 6 2017 ANPS Data Reports ISSN 2206-186X (Online) General Editor: David Blair Also in this series: ANPS Data Report 1 Joshua Nash: ‘Norfolk Island’ ANPS Data Report 2 Joshua Nash: ‘Dudley Peninsula’ ANPS Data Report 3 Hornsby Shire Historical Society: ‘Hornsby Shire 1886-1906’ (in preparation) ANPS Data Report 4 Lesley Brooker: ‘Placenames of Western Australia from 19th Century Exploration ANPS Data Report 5 David Blair: ‘Ocean Beach Names: Newcastle-Sydney-Wollongong’ Fences on the Darling Downs, Queensland (photo: DavidMarch, Wikimedia Commons) Published for the Australian National Placenames Survey This online edition: September 2019 [first published 2017, from research data of 2002] Australian National Placenames Survey © 2019 Published by Placenames Australia (Inc.) PO Box 5160 South Turramurra NSW 2074 CONTENTS 1.0 AN ANALYSIS OF DARLING DOWNS PLACENAMES 1827 – 1859 ............... 1 1.1 Sample one: Pastoral run names, 1843 – 1859 ............................................................. 1 1.1.1 Summary table of sample one ................................................................................. 2 1.2 Sample two: Names for natural features, 1837-1859 ................................................. 4 1.2.1 Summary tables of sample two ............................................................................... 4 1.3 Comments on the
    [Show full text]
  • Surface Water Network Review Final Report
    Surface Water Network Review Final Report 16 July 2018 This publication has been compiled by Operations Support - Water, Department of Natural Resources, Mines and Energy. © State of Queensland, 2018 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you. Surface
    [Show full text]
  • Baddiley Peter Second Statement Annex PB2-816.Pdf
    In the matter of the Commissions of Inquiry Act 1950 Commissions of Inquiry Order (No.1) 2011 Queensland Floods Commission of Inquiry Second Witness Statement of Peter Baddiley Annexure “PB2-8(16)” PB2-8(16) 1 PB2-8(16) 2 PB2-8 (16) FLDWARN Coastal Rs Maryborough south 1 December 2010 to 31 January 2011 TO::BOM612+BOM613+BOM614+BOM615+BOM617+BOM618 IDQ20780 Australian Government Bureau of Meteorology Queensland FLOOD WARNING FOR COASTAL STREAMS AND ADJACENT INLAND CATCHMENTS FROM MARYBOROUGH TO THE NSW BORDER Issued at 6:46 PM on Saturday the 11th of December 2010 by the Bureau of Meteorology, Brisbane. Heavy rainfall during Saturday has resulted in fast level rises in coastal catchments and adjacent inland catchments. The heaviest rainfall to 6pm Saturday has been in the Pine Rivers area and coastal areas from Brisbane to the Gold Coast. Further rainfall is forecast overnight with fast rises and some minor flooding expected. Rainfall totals in the 9 hours to 6pm include: Wynnum 100mm, Mitchelton 76mm, Logan 65mm, Coomera 46mm , Brisbane 74mm and Beerwah 60m. ## Next Issue: The next warning will be issued by 8am Sunday. Latest River Heights: nil. Warnings and River Height Bulletins are available at http://www.bom.gov.au/qld/flood/ . Flood Warnings are also available on telephone 1300 659 219 at a low call cost of 27.5 cents, more from mobile, public and satellite phones. TO::BOM612+BOM613+BOM614+BOM615+BOM617+BOM618 IDQ20780 Australian Government Bureau of Meteorology Queensland FLOOD WARNING FOR COASTAL STREAMS AND ADJACENT INLAND CATCHMENTS FROM MARYBOROUGH TO BRISBANE Issued at 8:19 AM on Sunday the 12th of December 2010 by the Bureau of Meteorology, Brisbane.
    [Show full text]
  • Downloaded from the SKM Website at Management/STEDI.Aspx
    Department of Environment and Resource Management Improved Assessment of the Impact of Stock and Domestic Farm Dams in Queensland STATEWIDE ASSESSMENT: REPORT 2 Hydrological assessment of stock and domestic farm dams in Queensland Final 28 March 2012 Department of Environment and Resource Management Improved Assessment of the Impact of Stock and Domestic Farm Dams in Queensland STATEWIDE ASSESSMENT: REPORT 2 Hydrological assessment of stock and domestic farm dams in Queensland Final 28 March 2012 This project was funded by the Australian Government through the National Water Commission’s Raising National Water Standards Program. Sinclair Knight Merz ABN 37 001 024 095 Cnr of Cordelia and Russell Street South Brisbane QLD 4101 Australia PO Box 3848 South Brisbane QLD 4101 Australia Tel: +61 7 3026 7100 Fax: +61 7 3026 7300 Web: www.globalskm.com COPYRIGHT: This work is copyright. Apart from any use permitted under the Australian Copyright Act 1968, no part of this report may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the Department of Environment and Resource Management, 2012. LIMITATION: This report has been prepared on behalf of and for the exclusive use of Sinclair Knight Merz Pty Ltd’s Client, and is subject to and issued in connection with the provisions of the agreement between Sinclair Knight Merz and its Client. Sinclair Knight Merz accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. The SKM logo trade mark is a registered trade mark of Sinclair Knight Merz Pty Ltd.
    [Show full text]
  • Queensland Recreational Boating and Fishing Guide
    QUEENSLAND Recreational 2015-2016 Edition Boating & Fishing GUIDE Facebook “f” Logo CMYK / .eps Facebook “f” Logo CMYK / .eps www.gbrmpa.gov.au Water sports . .44 Contents Water skiing . 44 Key contacts . 2 Water skiing safety tips . 45 Fisheries Queensland . 2 Sail boats and sail boards . 47 Maritime Safety Queensland . 3 Rowing . 47 Queensland Water Police . 3 Canoes, kayaks and surf skis . 47 National parks, marine parks, fish habitat areas Kitesurfing . 47 . and wildlife 3 Boating offshore . .48 Great Barrier Reef Marine Park Authority . 3 Bar crossings . 48 Boating in Queensland Bar crossing rules (under 4.8m) . 48 General rules and requirements . 5 Bar crossings can be dangerous . 48 General safety obligation . 5 Boating on freshwater . 48 Australian Builders Plate . 5 Carbon monoxide hazard . 50 Capacity labels . 6 Pollution . .50 Registering a boat . 7 . Marine driver licence . 8 Fuels, oils and chemicals 51 . BoatSafe – How to obtain a licence . 8 Sewage 51 Alcohol . 8 Marine Parks in Queensland Marine incidents . 10 Boating and fishing in the Great Barrier Reef Speed limits . 10 Marine Parks . 52 Safety equipment . 12 Know your zones in Moreton Bay Marine Park . 55 Life jackets/personal flotation devices (PFDs) . 12 Great Sandy Marine Park . 58 Life jacket checklst . 13 Fishing in Queensland . Distress flares 13 Recreational fishing rules for Queensland . 59 EPIRBs . 14 Recreational fishing in Queensland waters . 59 Fire fighting equipment . 15 Size and possession limits . 59 Navigation equipment . 15 Measuring fish and crabs . 59 Other equipment . 15 Catch and release . 60 Marine radio . .16 Compliance . 61 Licences and certificates . 16 Miscellaneous prohibitions . 62 Mobile phones .
    [Show full text]
  • Baddiley Peter Second Statement Annex PB2-831.Pdf
    In the matter of the Commissions of Inquiry Act 1950 Commissions of Inquiry Order (No.1) 2011 Queensland Floods Commission of Inquiry Second Witness Statement of Peter Baddiley Annexure “PB2-8(31)” PB2-8(31) 1 PB2-8(31) 2 PB2-8 (31) Queensland Flood Warning Summary 1 December 2010 to 31 January 2011 IDQ20885 Australian Government Bureau of Meteorology Queensland Flood Summary Issued at 9:47 AM on Wednesday the 1st of December 2010 The following Watches/Warnings are current: FLOOD WARNING FOR THE BULLOO RIVER FLOOD WARNING FOR THE WARREGO RIVER FLOOD WARNING FOR THE THOMSON AND BARCOO RIVERS AND COOPER CREEK For more information on flood warnings see: www.bom.gov.au/qld/warnings/ Additional information: Other flooding includes: Diamantina River: Minor flood levels are falling at Diamantina Lakes with minor flooding rising slowly at Monkira. Paroo River: Minor flooding is falling slowly at Hungerford. Moonie River: Minor flooding is rising at Nindigully. Dawson River: Minor flooding is rising at Tarana Crossing. Warnings and River Height Bulletins are available at http://www.bom.gov.au/qld/flood/ . Flood Warnings are also available on telephone 1300 659 219 at a low call cost of 27.5 cents, more from mobile, public and satellite phones. IDQ20885 Australian Government Bureau of Meteorology Queensland Flood Summary Issued at 5:30 PM on Wednesday the 1st of December 2010 The following Watches/Warnings are current: FLOOD WARNING FOR THE BULLOO RIVER FLOOD WARNING FOR THE FITZROY RIVER BASIN FLOOD WARNING FOR THE THOMSON AND BARCOO RIVERS AND COOPER CREEK FLOOD WARNING FOR THE WARREGO RIVER PB2-8(31) 3 Additional information: Other flooding includes: Diamantina River: Minor flood levels are falling at Diamantina Lakes with minor flooding rising at Monkira.
    [Show full text]
  • Stream Gauging Station Network
    Stream Gauging Station Network 2019–20 October 2019 This publication has been compiled by Natural Resources Divisional Support – Water, Department of Natural Resources Mines and Energy. © State of Queensland, 2019 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you. Summary This document lists the stream gauging station sites which make up the Department of Natural Resources, Mines and Energy’s stream height and stream flow monitoring network (the Stream Gauging Station Network).
    [Show full text]