Size-Exclusive Nanosensor for Quantitative Analysis of 11 12 Fullerene C60: a Concept Paper

Total Page:16

File Type:pdf, Size:1020Kb

Size-Exclusive Nanosensor for Quantitative Analysis of 11 12 Fullerene C60: a Concept Paper Page 1 of 18 Submitted to Environmental Science & Technology 1 2 3 4 5 6 7 8 9 10 Size-exclusive Nanosensor for Quantitative Analysis of 11 12 Fullerene C60: A Concept Paper 13 1 14 SAMUEL N. KIKANDI, VERONICA A. OKELLO, QIONG WANG, * OMOWUNMI A. SADIK 15 Center for Advanced Sensors & Environmental System (CASE) 16 Department of Chemistry 17 State University of New York-Binghamton 18 P.O. Box 6000 19 20 Binghamton, NY 13902-6000 21 22 KATRINA. E.VARNER 23 US-EPA/NERL 24 Environmental Sciences Division 25 P.O. Box 93478-3478 26 27 Las Vegas, NV 89193-3478 28 29 SARAH A. BURNS 30 Department of Chemistry 31 359 Natural Sciences Complex 32 State University of New York-Buffalo 33 Buffalo, NY 14260-3000 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 *Corresponding Author:(607)777-4132;Fax:(607)777-4132,E-mail:[email protected] ACS Paragon Plus Environment Submitted to Environmental Science & Technology Page 2 of 18 1 2 3 4 5 6 ABSTRACT 7 This paper presents the first development of a mass-sensitive nanosensor for the isolation 8 and quantitative analyses of engineered fullerene (C ) nanoparticles, while excluding 9 60 mixtures of structurally similar fullerenes. Amino-modified beta cyclodextrin (β-CD-NH2) was 10 1 11 synthesized and confirmed by HNMR as the host molecule to isolate the desired fullerene 12 C60. This was subsequently assembled onto the surfaces of gold-coated quartz crystal 13 microbalance (QCM) electrodes using N-Dicyclohexylcarbodiimide/N-hydroxysuccinimide 14 (DCC/NHS) surface immobilization chemistry to create a selective molecular configuration 15 described as (Au)-S–(CH2)2-CONH-beta–CD sensor. The mass change on the sensor 16 configuration on the QCM was monitored for selective quantitative analysis of fullerene C60 17 14 16 2 18 from a C60/C70 mixture and soil samples. About ~10 -10 C60 particles/cm were successfully 19 quantified by QCM measurements. Continuous spike of 200 µl of 0.14 mg C60 /ml produced 20 changes in frequency (-∆f) that varied exponentially with concentration. FESEM and Time-of- 21 Flight Secondary Ion Mass Spectrometry (ToF-SIMS) confirmed the validity of sensor surface 22 chemistry before and after exposure to fullerene C60. The utility of this sensor for spiked real- 23 world soil samples has been demonstrated. Comparable sensitivity was obtained using both 24 25 the soil and purified toluene samples. This work demonstrates that the sensor has potential 26 application in complex environmental matrices. 27 28 29 KEYWORDS: Fullerenes, Nanotechnology, Engineered Nanomaterials, Implications, Toxicity, 30 Cyclodextrin, Nanosensors. 31 32 33 Introduction: 34 The discovery of fullerenes in 1985 has ushered in an explosive growth in the applications of 35 engineered nanomaterials (ENMs) and products (1-5). The rapid development of 36 nanotechnology and the increasing production of nanomaterials-based products and 37 processes present great opportunities and challenges. To date, the potential impacts of 38 nanomaterials on human health and the environment have been limited due to insufficient 39 40 understanding of the risks associated with its development, manipulation and wide-ranging 41 applications. The first step in assessing the risks posed by ENMs is to develop a broad array 42 of analytical tools and methods that are applicable to a wide range of manufactured 43 nanomaterials. Conventional methods of assessing the properties and characteristics of raw 44 nanomaterials focus on the size distribution and effects. They are, however, unsuitable for 45 detection and quantification of complex environmental samples or for differentiating between 46 47 the total or dissolved metal fractions or metal oxidation states. The toxicity, detection and 48 characterization of nanomaterials are dependent on factors such as functionalization, 49 geometry, and the type of nanomaterials. For example, the cytotoxicity of fullerenes can be 50 decreased following its hydroxylation with 24 hydroxyl groups(3), while the cytotoxicity of 51 carbon nanomaterials may be enhanced if it was functionalized with carboxylic acid 52 moieties(4). The potential toxicity of fullerenes and its derivatives is still a subject of intense 53 discussion (5). Some reports depict fullerenes as non-toxic while others demonstrate their 54 55 ability to both quench and generate reactive oxygen species(ROS) (6), which may lead to 56 DNA damage(7). Additionally, positive cytotoxicity and genotoxicity have been reported for the 57 water-soluble C60 aggregates (nC60) despite its low hydrophobicity(8). 58 59 2 60 ACS Paragon Plus Environment Page 3 of 18 Submitted to Environmental Science & Technology 1 2 3 4 5 6 The first step to a better understanding of the fate and transport of fullerenes and other 7 nanomaterials is to develop reliable metrology and analytical sensors. These offer novel 8 screening and monitoring approaches towards a better understanding of engineered 9 10 nanomaterials. Nanosensors can be classified under two main categories(1, 9): (i) 11 Nanotechnology-enabled sensors or sensors that are themselves nanoscale or have 12 nanoscale materials or components, and (ii) Nanoproperty-quantifiable sensors. 13 Nanomaterials dimensions are on the same scale as biomolecules, which unveils exciting 14 possibilities for their interaction with biological species, such as microbial, tissue, cells, 15 antibodies, DNA and other proteins. Type I sensors have been used for the construction of 16 enzyme sensors, immunosensors and genosensors, to achieve direct wiring of enzymes and 17 18 relative components to electrode surface, to promote spectroelectrochemical reaction, to 19 impose barcode for biomaterials and to amplify signal of biorecognition event[(10, 11). 20 Extensive research papers and reviews using nanomaterials for chemical and bioassays have 21 since been published (1, 5). 22 Despite the enormous literatures, there are few sensors to measure nanoscale 23 properties or sensors belonging to Type II. This class of nanosensors is an area of critical 24 25 interest to nanotoxicology, detection and risk assessment, as well as for monitoring of 26 environmental and/or biological exposures to nanomaterials such as fullerene C60. This is 27 important because engineered fullerenes C60 which are prepared via thermal reactions always 28 exist as a mixture of C60, C70 and higher homologues. While supramolecular complexation 29 with host-guest recognition is a well-studied topic (12-14), and nanomaterials have been 30 widely reported as components of sensing or other applications, to the best of our knowledge, 31 there has neither been fullerene sensors reported nor the assembly of β-CD achieved onto 32 33 mass selective transducers for C60 nanoparticle sensing applications. This paper presents the 34 development of Category II nanosensor for the isolation and quantitative analyses of 35 engineered fullerene C60 while excluding other structurally similar fullerenes C70 and higher 36 homologues. 37 38 Experimental section: 39 40 Microgravimetric measurements: Microgravimetric measurements were performed following 41 a conventional procedure(15). Briefly, all microgravimetric QCM experiments were performed 42 using a QCA 917-quartz crystal analyzer (Seiko EG&G). This was an open circuit system 43 where only the gold-coated quartz crystal (QA-A9M-Au(M)) from Advanced Meas. Tech. (Oak 44 Ridge, TN)working electrode (QCM, area ~ 0.2 cm2) was connected in the absence of the 45 auxiliary and the reference electrodes.). The resonators consisted of gold thickness layer of 46 47 300 nm and a frequency resolution of 0.1 Hz at a sampling rate of 100 ms, allowing excellent 48 sensitivity down into the nanogram region. These resonators were mounted onto a Teflon 49 well-type electrochemical cell(15) then soaked with test solutions. Buffalo River Sediments soil 50 samples were obtained from, National Institute of Standards and Technology, Gaithersburg, 51 MD 20899, (Lot # 8704). 52 53 β 54 Synthesis of Cyclodextrin Derivatives: The sensor fabrication started with the synthesis of 55 or γ-cyclodextrin derivatives consisting of amino-functionalized derivatives of cyclodextrins 56 designated as: β-CD-NH2 1 and γ-CD-NH2 2(Supplementary Figure 1A). The synthesis of 57 these derivatives utilized previous literature procedures with slight modifications (16): Briefly, 58 0.72 g of either β–CD or γ-CD was treated with 1.2 g toluene-2-sulfonyl chloride, TsCl (Sigma- 59 3 60 ACS Paragon Plus Environment Submitted to Environmental Science & Technology Page 4 of 18 1 2 3 4 5 6 Aldrich,US) and ethylenediamine(1 ml)(Sigma-Aldrich, US) in 20 mL pyridine (Sigma-Aldrich, 7 US) and the mixture was refluxed for 7 hours resulting in yellow solids. The yellow solids were 8 designated as β-CD-NH 1 or γ-CD-NH 2. These synthetic products (1 & 2) were stored 9 2, 2 10 under ultra high purity nitrogen (UHP) until they were utilized for the immobilization onto the 11 QCM surface. 1 12 Successful synthesis of 1 and 2 were confirmed by HNMR spectra recorded on a 13 Bruker AM 360 spectroscopic system equipped with 8.45 T magnet and multinuclear and 14 inverse detection capabilities at 360MHz at 20 °C using D2O solvent (Supplementary Figure 15 1B). The 1HNMR sample concentrations were approximated as 25 mg/mL of β–CD, β–CD- 16 17 NH2 1, γ–CD and γ–CD-NH2 2. Compound 1, showed characteristic NH2 and methylene 18 protons with chemical shifts at δ ~2.2ppm and δ ~3.0 ppm respectively. Compound 2 showed 19 similar chemical shifts at δ ~ 2.2 and 2.8 ppm for NH2 and methylene protons respectively 20 (data not included). Chemical shifts from both compounds 1 and 2 were consistent with the 21 calculated theoretical chemical shifts values using ChemDraw for NH2 and CH2-protons (δ 22 =2.0 and δ=2.8 ppm respectively).
Recommended publications
  • Nanosensor Manufacturing Workshop Summary (2017)
    Nanosensor Manufacturing Workshop: Finding Better Paths to Products June 13-14, 2017 About the National Nanotechnology Initiative The National Nanotechnology Initiative (NNI) is a U.S. Government research and development (R&D) initiative involving 20 Federal departments, independent agencies, and independent commissions working together toward the shared and challenging vision of a future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society. The combined, coordinated efforts of these agencies have accelerated discovery, development, and deployment of nanotechnology to benefit agency missions in service of the broader national interest. More information can be found at www.nano.gov. About the Nanotechnology Signature Initiatives The Federal agencies participating in the NNI have identified focused areas of national importance that may be more rapidly advanced through enhanced coordination and collaboration of agency research and development efforts. These Nanotechnology Signature Initiatives (NSIs) provide a spotlight on critical areas and define the shared vision of the participating agencies for accelerating the advancement of nanoscale science and technology to address needs and exploit opportunities from research through commercialization. They are intended to be dynamic, with topical areas rotating and evolving over time. More information about the NSIs can be found at www.nano.gov/signatureinitiatives. About this document This is the report of the NNI Nanosensor Manufacturing Workshop: Finding Better Paths to Products, held on June 13-14, 2017, in Arlington, VA, organized by the National Nanotechnology Coordination Office (NNCO) in support of the Nanotechnology for Sensors and Sensors for Nanotechnology Signature Initiative (Sensors NSI).
    [Show full text]
  • Direct Synthesis of Fullerenol from Pristine Fullerene [C60]
    RSC Advances View Article Online PAPER View Journal | View Issue Hydration or hydroxylation: direct synthesis of fullerenol from pristine fullerene [C ] via acoustic Cite this: RSC Adv.,2017,7,31930 60 cavitation in the presence of hydrogen peroxide Sadia Afreen,a Ken Kokubo,b Kasturi Muthoosamya and Sivakumar Manickam *a A green and clean approach that requires low energy and avoids the use of any toxic or corrosive reagents/ solvents for the synthesis of potential fullerenol moieties [C60(OH)n$mH2O] was proposed in this investigation, in which pristine fullerene (C60) in dil. H2O2 (30%) aqueous media was ultrasonicated (20 kHz, 200 W) at 30% amplitude for 1 h. The attachment of hydroxyl groups (–OH) was investigated via FTIR and the quantification of –OH groups attached to the C60 cage was conducted via elemental analysis. The number of secondary bound water molecules (mH2O) with each fullerenol molecule [C60(OH)n] was measured via TGA, and the estimated average structure of fullerenol was calculated to be C60(OH)8$2H2O. The synthesized fullerenol was moderately soluble in water and DMSO. Furthermore, Creative Commons Attribution 3.0 Unported Licence. the size of the synthesized C60(OH)8$2H2O particles determined by both AFM and DLS analysis was Received 3rd April 2017 found to be in the range of 135–155 nm. The proposed ultrasound-assisted acoustic cavitation Accepted 4th June 2017 technique encompasses a one-step facile reaction strategy, requires less time for the reaction, and DOI: 10.1039/c7ra03799f reduces the number of solvents required for the separation and purification of C60(OH)8$2H2O, which rsc.li/rsc-advances could be scalable for the commercial synthesis of fullerenol moieties in the future.
    [Show full text]
  • Size-Exclusive Nanosensor for Quantitative Analysis of Fullerene C60 Samuel N
    ARTICLE pubs.acs.org/est Size-Exclusive Nanosensor for Quantitative Analysis of Fullerene C60 Samuel N. Kikandi, Veronica A. Okello, Qiong Wang, and Omowunmi A. Sadik* Center for Advanced Sensors & Environmental System (CASE), Department of Chemistry, State University of New York-Binghamton, P.O. Box 6000 Binghamton, New York 13902-6000, United States Katrina E. Varner US-EPA/NERL Environmental Sciences Division, P.O. Box 93478-3478 Las Vegas, Nevada 89193-3478, United States Sarah A. Burns Department of Chemistry, 359 Natural Sciences Complex, State University of New York-Buffalo, Buffalo, New York 14260-3000, United States bS Supporting Information ABSTRACT: This paper presents the first development of a mass-sensitive nanosensor for the isolation and quantitative analyses of engineered fullerene (C60) nanoparticles, while excluding mixtures of structurally similar fullerenes. Amino- fi β modi ed beta-cyclodextrin ( -CD-NH2) was synthesized and confirmed by 1HNMR as the host molecule to isolate the desired fullerene C60. This was subsequently assembled onto the surfaces of gold-coated quartz crystal microbalance (QCM) electrodes using N-dicyclohexylcarbodiimide/N-hydroxysucci- nimide (DCC/NHS) surface immobilization chemistry to create a selective molecular configuration described as (Au)- fi S-(CH2)2-CONH-beta-CD sensor. The mass change on the sensor con guration on the QCM was monitored for selective ∼ 14À 16 2 quantitative analysis of fullerene C60 from a C60/C70 mixture and soil samples. About 10 10 C60 particles/cm were fi μ successfully quanti ed by QCM measurements. Continuous spike of 200 L of 0.14 mg C60 /mL produced changes in frequency (ÀΔf) that varied exponentially with concentration.
    [Show full text]
  • J34-Wbza56.Pdf
    Article pubs.acs.org/ac Quantum Dot/Carrier−Protein/Haptens Conjugate as a Detection Nanobioprobe for FRET-Based Immunoassay of Small Analytes with All-Fiber Microfluidic Biosensing Platform † ‡ † § † Feng Long, , Chunmei Gu, April Z. Gu, and Hanchang Shi*, † State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, People’s Republic of China ‡ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States *S Supporting Information ABSTRACT: This study demonstrates the use of carrier- protein/haptens conjugate (e.g., BSA/2,4-dichlorophenoxy- acetic acid, 2,4-D-BSA) for biological modification of quantum dots (QDs) for the detection of small analytes. Bioconjugated QDs, which are used as a detection nanoimmunoprobe, were prepared through conjugating carboxyl QDs with 2,4-D-BSA conjugate. Based on the principle of quantum dot− fluorescence resonance energy transfer (QD-FRET), an all- fiber microfluidic biosensing platform has been developed for investigating FRET efficiency, immunoassay mechanism and format, and binding kinetics between QD immunoprobe and fluorescence labeled anti-2,4-D monoclonal antibody. The structure of multiplex-haptens/BSA conjugate coupling to QD greatly improves the FRET efficiency and the sensitivity of the nanosensor. With a competitive detection mode, samples containing different concentrations of 2,4-D were incubated with a given concentration of QD immunoprobe and fluorescence-labeled antibody, and then detected by the all-fiber microfluidic biosensing platform. A higher concentration of 2,4-D led to less fluorescence-labeled anti-2,4-D antibody bound to the QD immunoprobe surface and, thus, a lower fluorescence signal.
    [Show full text]
  • NSI Sensors White Paper
    Nanotechnology Signature Initiative: Nanotechnology for Sensors and Sensors for Nanotechnology 09 July 2012 NSTC COMMITTEE ON TECHNOLOGY SUBCOMMITTEE ON NANOSCALE SCIENCE, ENGINEERING, AND TECHNOLOGY Nanotechnology Signature Initiative Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment Collaborating Agencies:i CPSC, DOD/DTRA, EPA, FDA, NASA, NIH, NIOSH, NIST, NSF, USDA/NIFA National Need Addressed Nanotechnology-enabled sensors (nanosensors) are providing new solutions in physical, chemical, and biological sensing that enable increased detection sensitivity, specificity, and multiplexingii capability in portable devices for a wide variety of health, safety, and environmental assessments [1]. There are many compelling drivers for development of nanosensors. For example, the increasing size and global distribution of agricultural and manufacturing facilities has created an urgent need for sensors that can rapidly and reliably detect and identify the source of pollutants, adulterants, pathogens, and other threat agents at any point in the supply chain. The increasing burden of chronic diseases such as cancer and diabetes in the aging U.S. population requires improved sensors to identify early-stage disease and inform disease management. Several new high-performance nanosensors have already demonstrated rapid response and increased sensitivity at reduced size. However, translation of these devices to the commercial market is impeded by questions about reliability, reproducibility,
    [Show full text]
  • Use of Machine Learning with Temporal Photoluminescence Signals from Cdte Quantum Dots for Temperature Measurement in Microfluidic Devices Charles Lewis, James W
    www.acsanm.org Article Use of Machine Learning with Temporal Photoluminescence Signals from CdTe Quantum Dots for Temperature Measurement in Microfluidic Devices Charles Lewis, James W. Erikson, Derek A. Sanchez, C. Emma McClure, Gregory P. Nordin, Troy R. Munro, and John S. Colton* Cite This: ACS Appl. Nano Mater. 2020, 3, 4045−4053 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Because of the vital role of temperature in many biological processes studied in microfluidic devices, there is a need to develop improved temperature sensors and data analysis algorithms. The photoluminescence (PL) of nanocrystals (quan- tum dots) has been successfully used in microfluidic temperature devices, but the accuracy of the reconstructed temperature has been limited to about 1 K over a temperature range of tens of degrees. A machine learning algorithm consisting of a fully connected network of seven layers with decreasing numbers of nodes was developed and applied to a combination of normalized spectral and time-resolved PL data of CdTe quantum dot emission in a microfluidic device. The data used by the algorithm were collected over two temperature ranges: 10−300 K and 298−319 K. The accuracy of each neural network was assessed via a mean absolute error of a holdout set of data. For the low-temperature regime, the accuracy was 7.7 K, or 0.4 K when the holdout set is restricted to temperatures above 100 K. For the high-temperature regime, the accuracy was 0.1 K. This method provides demonstrates a potential machine learning approach to accurately sense temperature in microfluidic (and potentially nanofluidic) devices when the data analysis is based on normalized PL data when it is stable over time.
    [Show full text]
  • Cellular Lensing and Near Infrared Fluorescent Nanosensor Arrays To
    ARTICLE https://doi.org/10.1038/s41467-021-23416-1 OPEN Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry Soo-Yeon Cho 1, Xun Gong1, Volodymyr B. Koman 1, Matthias Kuehne 1, Sun Jin Moon1, Manki Son1, ✉ Tedrick Thomas Salim Lew 1,2, Pavlo Gordiichuk1, Xiaojia Jin 1, Hadley D. Sikes 1 & Michael S. Strano 1 1234567890():,; Nanosensors have proven to be powerful tools to monitor single cells, achieving spatio- temporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC). nIR fluorescent carbon nanotube array is integrated along microfluidic channel through which flowing cells is guided. We can utilize the flowing cell itself as highly informative Gaussian lenses projecting nIR profiles and extract rich infor- mation. This unique biophotonic waveguide allows for quantified cross-correlation of bio- molecular information with various physical properties and creates label-free chemical cytometer for cellular heterogeneity measurement. As an example, the NCC can profile the immune heterogeneities of human monocyte populations at attomolar sensitivity in com- pletely non-destructive and real-time manner with rate of ~600 cells/hr, highest range demonstrated to date for state-of-the-art chemical cytometry. 1 Department of Chemical Engineering, Massachusetts Institute of
    [Show full text]
  • Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation
    Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Michael L. Etheridge IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: John C. Bischof December 2013 © Michael L. Etheridge 2014 Acknowledgements This work would not have been possible without the support (both professional and personal) of a great number of people. First, I would like to thank my advisor, Professor John Bischof, for his guidance throughout this endeavor. I waded into the Ph.D. program because I wanted to be sure that I could find a project I cared about and an advisor that I respected and could learn from. I think I developed a lot during my time here in the Bioheat and Mass Transfer Lab, thanks in a large part to our candid (and sometimes “lively”) discussions. Although our approaches may have differed, I think it provided overall for a great process and I am very proud of my work here. One of the greatest opportunities (and challenges) of this project was the collaborative nature of this research. Specifically, I would like to thank Dr. Steven Girshick (Mechanical Engineering), Dr. Rhonda Franklin (Electrical and Computer Engineering), Dr. Michael Garwood (Center for Magnetic Resonance Research), Dr. Jack Hoopes (Dartmouth College), Dr. Christy Haynes (Chemistry), and Dr. Chris Hogan (Mechanical Engineering), for a wide variety of technical and general direction over the years. In addition, Katie Hurley, Dr. Jeunghwan Choi, Zhenpeng Qin, Chunlan Jiang, Dr.
    [Show full text]
  • Plasmonic Nanoparticle Deposition on a Micropillar Array As a 3D Nanosensor C
    PLASMONIC NANOPARTICLE DEPOSITION ON A MICROPILLAR ARRAY AS A 3D NANOSENSOR C. Huang1*, H. Jans1, N. Verellen1, M. Bivragh1, and L. Lagae1, 2 1IMEC, Kapeldreef 75, 3001, Heverlee, BELGIUM 2Department of Physics and Astronomy, Celestijnenlaan 200d, 3001, Heverlee, BELGIUM ABSTRACT A sensitive and compact 3D plasmonic nanosensor was developed by deposition of gold nanoparticles (AuNPs) on a silicon micropillar array for label-free biosensing. This silicon micropillar array also worked as an autonomous capillary pump, capable of transporting a specific amount of bio-samples into the sensing area without external pumping requirement. The developed device greatly decreased system complexity and sample consumption. Both the extinction spectra peak position and the maximum extinction exhibited good linear relationships with the surrounding refractive index of the environment. KEYWORDS: Capillary flow, Micropillars, Localized Surface Plasmon Resonance (LSPR), Nano-(bio)sensor INTRODUCTION Noble metal nanoparticles such as gold or silver nanoparticles, reveal an intense color that can be explained by the phenomenon known as Localized Surface Plasmon Resonance (LSPR), which are collective oscillations of conduction electrons induced by visible light. These light-absorption and scattering properties of the nanoparticle are very sensitive to changes in the local environment around it and have been used for label-free biosensing. Previous work reported the AuNPs-based biosensors for the detection of various biomarkers in suspensions and on substrates [1]. Recently, the AuNPs have also been integrated with a microfluidic chip, thus taking advantages from both technologies [2]. However, the main drawback of this configuration was that the affinity-based bio-reaction (e.g., antibody-antigen interaction) could only take place at the vicinity of the 2D biosensor surface (vicinity of the LSPR AuNPs).
    [Show full text]
  • A Fluorescent Nanosensor Paint Reveals the Heterogeneity of Dopamine Release from Neurons at Individual Release Sites
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437019; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A fluorescent nanosensor paint reveals the heterogeneity of dopamine release from neurons at individual release sites Elizarova, S.1, 2, Chouaib, A. 3, Shaib, A.1,4, Mann, F.5, Brose, N.1, Kruss, S.*5,6,7, Daniel, J.A.*1 1 Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany. 2 Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Germany. 3 Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany. 4 Institute for Neuro- and Sensory Physiology, University Medical Center, Göttingen, Germany. 5 Institute of Physical Chemistry, University of Göttingen, Germany. 6 Physical Chemistry II, Faculty of Science, Ruhr University, Bochum, Germany. 7 Fraunhofer Institute of Microelectronic Circuits and Systems, Duisburg, Germany. * Co-corresponding authors – [email protected], [email protected] Abstract The neurotransmitter dopamine is released from discrete axonal structures called varicosities. Its release is essential in behaviour and is critically implicated in prevalent neuropsychiatric diseases. Existing dopamine detection methods are not able to detect and distinguish discrete dopamine release events from multiple varicosities. This prevents an understanding of how dopamine release is regulated across populations of discrete varicosities. Using a near infrared fluorescent (980 nm) dopamine nanosensor ‘paint’ (AndromeDA), we show that action potential-evoked dopamine release is highly heterogeneous across release sites and also requires molecular priming.
    [Show full text]
  • Opportunities and Risks of Nanotechnologies Report in Co-Operation with the OECD International Futures Programme Contents
    Small sizes that matter: Small sizes that matter: Opportunities and risks of Nanotechnologies Report in co-operation with the OECD International Futures Programme Contents 1. Executive Summary 3 1.1. Nanotechnology and the market place 3 1.2. Investments in nanotechnology 4 1.3. The environmental, health and safety discussion related to nanoparticles 4 1.4. Allianz’s position on industrial insurance cover 5 2. What is nanotechnology and what makes it different? 6 2.1. Introduction 6 2.2. Nanomaterials: basic building blocks 8 2.3. Nano tools and fabrication techniques 11 2.4. Present and future areas of application 12 3. Market prospects and opportunities 14 3.1. Sectoral example: Medicine 15 3.2. Sectoral example: Food and agriculture 17 3.3. Sectoral example: Semiconductors and computing 18 3.4. Sectoral example: Textiles 20 3.5. Sectoral example: Energy 21 3.6. Nanotechnology and the situation of developing countries 22 4. Players 24 5. Nanotechnology programs of governments 26 6. What are the risks of Nanotechnology? 27 6.1. Broad range of technologies, variety of risks 27 6.2. Positive effects on human health and the environment 28 6.3. Manufactured nanoparticles 28 6.4. Nanoparticles and human health 30 6.5. Nanoparticles and the environment 35 6.6. Explosion hazards of nanoparticles 36 6.7. Self replication of miniature machines 37 6.8. Regulatory considerations of authorities and other stakeholders 38 6.9. Position of the industry 39 6.10. Position of pressure groups 40 6.11. Position of reinsurers and insurers 40 7. Chances and risks for the Allianz Group 41 7.1.
    [Show full text]
  • Antibody Nanosensors: a Detailed Review
    RSC Advances REVIEW View Article Online View Journal | View Issue Antibody nanosensors: a detailed review E. K. Wujcik,*a H. Wei,b X. Zhang,b J. Guo,b X. Yan,b N. Sutrave,a S. Wei*c and Z. Guo*b Cite this: RSC Adv.,2014,4,43725 In this review, the authors will discuss novel and prospective antibody nanosensors for the detection of specific analytes used in a number of fields of analytical chemistry. Biosensors—transducers that incorporate biological molecules for recognition—have been found to be fundamental in a number of chemical, clinical, and environmental analyses. Antibody nanosensors make up a large area of this research, as the antibodies' specific recognition elements make them highly selective and sensitive. These biological molecules can also be tailored to recognize any single analyte or group of analytes, and can be easily functionalized to a number of nanomaterial substrates. Herein, a number of antibody Received 15th July 2014 nanosensor transduction methods will be examined, including electrochemical, optical, magnetic, and Accepted 4th September 2014 piezoelectric, among others that fall into multiple categories. This review will show that it is clear that DOI: 10.1039/c4ra07119k antibody nanosensors—and nanosensors in general—are highly sensitive no matter the transduction www.rsc.org/advances method, and that various transduction methods can be suited for a number of different applications. 1. Introduction nanotechnology has brought on many new materials with oen enhanced chemical and physical properties—highly tunable Almost every eld of science and engineering has the need size and shape-dependent features, unique and tailorable for sensitive detection of specic analytes.
    [Show full text]