Science 9Th Grade LEARNING OBJECT Which Systems Does

Total Page:16

File Type:pdf, Size:1020Kb

Science 9Th Grade LEARNING OBJECT Which Systems Does Science 9th grade LEARNING OBJECT LEARNING UNIT Which systems does biology use to organize living things in What is everything around us our planet? made of? S/K o Recognize the binomial nomenclature system. o Compare the arguments on biological classifications of the different taxonomic schools that contributed to the development of systematics. o Illustrate the relationships among some species through different phylogenetic groupings. o Associate the hierarchical classification of species with the process of evolution. o Explain the impact of the development of molecular techniques on the emergence of molecular systematics. o Produce a taxonomic key. o Explain how an herbarium works. Language English Socio cultural context of Colombia the LO Curricular axis Living environment Standard competencies I identify criteria to classify individuals in the same species. Background Knowledge Concepts on taxonomic categories. Work on the science of evolution and phylogenetic relationships expressed in cladograms. English Review topic Expressions of contrast and addition Vocabulary box Branch: an arm-like part of a tree. Dichotomous: involving two completely opposing ideas or things. Fin: a thin movable part on a fish’s body by which it balances, moves, changes direction, etc. Fur: the thick hair that covers the bodies of some animals. Genotype: the particular type and arrangement of genes that each organism has. Hierarchy: a system in which people or things are arranged according to their importance. Research: a detailed study of a subject, especially in order to discover (new) information or reach a (new) understanding. Phylogenetic: based on natural evolutionary relationships. NAME: _________________________________________________ GRADE: ________________________________________________ INTRODUCTION: The importance of organizing living things Planet Earth has special characteristics that allow the survival of numerous and diverse living things. Since time immemorial, humans (homo sapiens) have given names to the resources around them, including biological species, probably due to the need of distinguishing dangerous predators, recognizing edible species, selecting raw materials to make goods, etc. This nomenclature is local, since a living thing can receive different names depending on the population. For example, the opossum is known as zarigüeya, fara, chuca or rabipelao in Spanish. These names vary from one country or region to another. Knowing living things led scientists to the conclusion that they all have a series of characteristics common for some groups that distinguish them from the rest. So, they can be identified and grouped together in categories. Question: In the region where you live, are there animals or plants that receive more than one common name? __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Objectives: To explain the criteria used to classify individuals in the same species. To recognize the importance of taxonomy for the knowledge and conservation of the world’s biodiversity, particularly in Colombia. To analyze the hierarchical association of organisms with evolutionary processes for the classification of living things through binomial nomenclature. Activity 1: How are the living organisms around us named? We call the living organisms that surround us by their common names, like dog, cow, rose, cat, rice, among others. But they also have a taxonomic nomenclature suggested by Carl Linnaeus (1758). This nomenclature proposes two names, one that corresponds to the genus, and another one to the specific name. For example, the nomenclature for the dog is: Canis lupus Canis makes reference to the genus and starts with a capital letter. lupus is an epithet or specific name. Nomenclature for a Colombian dog breed Figure 1. Canis lupus familiaris. Colombian fino hound, descendant of European hunting dogs. Retrieved from: https://en.wikipedia.org/wiki/Colombian_fino_hound The discovery of America was one of the main events that motivated scientists of the 16th century to look for ways to organize and name specimens that were found during the explorations of the new continent. Nearly two centuries passed before Carl Linnaeus (1758) established the basis for the modern classification system and the binomial nomenclature. Linnaeus grouped many organisms according to their morphology, that is, their physical characteristics. Binomial nomenclature consists in giving two names for a species, like in the example of the dog. Taxonomic schools Within the history of systematics, we find three schools: Evolutionary, Phenetic and Cladistic. 1. Evolutionary School: It states that when a classification is made, the common ancestor and the evolutionary changes of the species should be taken into account, as well as the interaction with the environment which may have caused the species to separate from its ancestor. For example, since birds have adapted to air, they must be classified in a category superior to that of crocodiles, but both of these species have a common ancestor which would make them part of the same group: reptiles. This can be observed in figure 2. Relationship between birds and reptiles Figure 2. Relationship between current birds and reptiles, as suggested by the Evolutionary School. Retrieved from: https://es.wikipedia.org/wiki/Sistem%C3%A1tica_evolutiva 2. Phenetic School: suggests that classifications should be made taking into account the greatest quantity of measurable, countable and observable characteristics in organisms, analyzing them through numerical techniques. In figure 3, you can observe the similarity among six species, with a similarity coefficient from 0,0 to 1,0. Instead of genealogical evolutionary relationships, this school takes morphology into account. Similarity coefficient of six species Figure 3. Phenogram with similarity coefficient, suggested by the Phenetic School. Comparison of the coefficient of similarity among six species. Retrieved from: http://perso.wanadoo.es/jjdeharo/sistematica/curso/s3.htm#_Toc471623355 3. Cladistic School: the classification is based on the evolutionary (phylogenetic) relationships of organisms. These are grouped together depending on whether or not they have one or several unique characteristics in common that come from the last common ancestor of the group and that are not present in older ancestors. They are expressed in a cladogram. For example, figure 4 shows a cladogram of evolution of terrestrial animals, presenting a possible evolution from the lamprey (jawless fish) to the gorilla. Cladogram of species evolution Figure 4. Cladogram showing evolutionary relationships of terrestrial animals, from an agnathan (fish) to a mammal (gorilla), with the evolution of characteristics like the presence of jaws, lungs, dry skin, fur, and the absence of a tail. Retrieved from: https://commons.wikimedia.org/wiki/File:Cladograma.png Remember that… The cladogram considers shared characteristics derived from the evolutionary relationships of organisms. Learning activity: The goal of this activity is to recognize morphological characteristics that have appeared evolutionarily in some species and place them in a cladogram. Instructions: 1. Observe the cladogram in figure 5 and the evolutionary characteristics that it includes on the branches. 2. Join two classmates. Discuss and write down the characteristics that the organisms share with their ancestors. 3. In a paragraph of no more than 10 lines, explain the characteristics that they share with other groups. Relationship among a bacterium, a fungus, a butterfly, a fish, a lizard, and a mouse 1. Bacterium: _____________________ 2. Fungus: ______________________ 3. Butterfly: ____________________ 4. Fish: _________________________ 5. Lizard: _____________________ 6. Mouse: _______________________ Figure 5. Cladogram. The red lines indicate shared characteristics. Retrieved from: http://www.taringa.net/posts/info/1316625/Cladogramas-Ilustrando-el-parentesco-evolutivo.html Activity 2: Taxonomy Taxonomy expresses “order”. It is based on the classification that is applied in biology for the systematic and hierarchical ordering of the groups of living things like, for example, animals, plants and bacteria. The relationships among the organisms are analyzed, with the goal of creating the phylogenetic tree of a given organism, and the evolutionary branches are found. Taxonomy is in charge of studying relationships. In the world there’s a diversity of species. 54.871 species have been registered in Colombia, so it is essential to implement a classification system that permits us: To establish evolutionary paths that have led to current species. To group organisms in categories based on comparative, morphological, cellular, evolutionary, molecular, and ecological characteristics. To give unique names to organisms. Currently, molecular genetic techniques like PCR (polymerase chain reaction) and electrophoresis (separation of proteins based on molecular weight) are being used. During the past decades, these techniques have become more important for the studies of evolutionary relationships, since they allow us to identify the relationships between different types of organisms through the genotype expressed in the DNA’s nucleotide sequence, the RNA sequence and in cellular proteins. It’s important to highlight that the evolutionary relationship is closer when there are
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Herpetological Information Service No
    Type Descriptions and Type Publications OF HoBART M. Smith, 1933 through June 1999 Ernest A. Liner Houma, Louisiana smithsonian herpetological information service no. 127 2000 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. Introduction Hobart M. Smith is one of herpetology's most prolific autiiors. As of 30 June 1999, he authored or co-authored 1367 publications covering a range of scholarly and popular papers dealing with such diverse subjects as taxonomy, life history, geographical distribution, checklists, nomenclatural problems, bibliographies, herpetological coins, anatomy, comparative anatomy textbooks, pet books, book reviews, abstracts, encyclopedia entries, prefaces and forwords as well as updating volumes being repnnted. The checklists of the herpetofauna of Mexico authored with Dr. Edward H. Taylor are legendary as is the Synopsis of the Herpetofalhva of Mexico coauthored with his late wife, Rozella B.
    [Show full text]
  • Bulletin of the Essex Institute
    THE NORTH AMERICAN REPTILES AND BATRACHIANS. A LIST OF THE SPECIES OCCURRING NORTH OF THE ISTHMUS OF TEHUANTEPEC, WITH REFERENCES. BY SAMUEL GARMAN. The following list is presented in the shape in which it has proved most useful in my own work. As in other pub- lications, I have placed the date immediately after the au- thority, as one naturally thinks it. In order accurately to determine species, comparison should be made with the original description rather than with the opinion of a sub- sequent writer ; for this reason reference is made to the discoverer and not to one in whose opinion the species belonofs to a o^enus some other than that in which it was originally placed. Consequently, the references are under names unaffected by frequent changes from one genus to another. Heretofore, the faunal limit for North America has been patriotically placed at the Mexican boundary. The distribution of the reptiles and Batrachians proves this limit to be unscientific, and shows the nearest approach to a separation between the faunae of the Americas, North and South, at the southern extremity of the tableland of Mexico. Attempt is made in this list to include all the species known to occur north of that point. When several localities for a species are given, they are chosen to indicate the extent of its range as nearly as possible. With a slight modification, the binomial system is fol- lowed. For various reasons, as will be seen below, the tri- (3) 4 garman's list op or polynomiiils affected by different authors, can hardly be considered improvements.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Edward Harrison Taylor: the Teacher by A
    HERP QL 31 .T37 E37 EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST NOTE: The map depicting part of the Philip- pine region, reproduced on the cover, was used by Edward H. Taylor in the course of field work in 1912-1913. Edward H. Taylor EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST EDWARD H. TAYLOR Professor and Curator Emeritus Department of Systematics and Ecology and Museum of Natural History The University of Kansas Lawrence, Kansas 66045 A. BYRON LEONARD Professor Emeritus Department of Systematics and Ecology The University of Kansas Lawrence, Kansas 66045 HOBART M. SMITH Professor Department of Environmental, Population, and Organismic Biology University of Colorado Boulder, Colorado 80302 GEORGE R. PISANI Visiting Instructor Department of Biology The University of Kansas Lawrence, Kansas 66045 Monograph of THE Museum of Natural History, The University of Kansas Number 4 1975 University of Kansas Publications, Museum of Natural History Editor: Richard F. Johnston Monograph Series, Publication No. 4 pp. 1-160; 6 figures; 1 plate Published December 15, 1975 WW 1 6 1999 Museum of Natural History The University of Kansas Lawrence, Kansas 66045 U.S.A. Copyright 1975, Museum of Natural History The University of Kansas Printed by University of Kansas Printing Service Lawrence, Kansas PREFACE The charge to anyone doing a volume like this is complex and best met by artists, not scientists. Professor E. H. Taylor is now 86 years old and has been busy for all that time. How, short of a full biography, can we recreate in our minds the sense of and feeling for this energetic, creative, sometimes irascible man who has had an extraordinary career as naturalist, explorer, teacher, friend (especially of children), scientist, spy, consort of royalty and "father" of modern herpetology? This book senses the man only fractionally and certainly less than we expect for average his full persons.
    [Show full text]
  • 2008 Board of Governors Report
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.
    [Show full text]
  • Áreas Naturales Protegidas Scripta
    Áreas Naturales Protegidas Scripta AÑO 5 NÚMERO 1 enero-julio, 2019 Revista Digital de Investigación Científica ÁREAS NATURALES PROTEGIDAS SCRIPTA, Año 5, Volumen 5, Número 1, Enero-Junio de 2019, es una publicación científica digital de periodicidad semestral editada por el Dr. Alfredo Ortega- Rubio. Av. Erizo 227, La Paz, Baja California Sur, C. P. 23090, Tel (612) 12 41618. http://areas-naturalesprotegidas. org/scripta/e_cintillo2016.pdf, [email protected]. Editor responsable Dr. Alfredo Ortega Rubio. Reservas de Derechos al Uso Exclusivo No. 04-2015- 071509261100-203; ISSN: 2448-7287. Ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número, Dr. Alfredo Ortega- Rubio, Av. Erizo 227, La Paz, Baja California Sur, C. P. 23090, Tel (612) 12 41618. [email protected], fecha de la última modificación 30 Junio 2019. Las opiniones expresadas por los autores no necesariamente reflejan la postura de los editores de la publicación. Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de esta publicación sin previa autorización de los autores de este número de ÁREAS NATURALES PROTEGIDAS SCRIPTA. La publicación de este número de ÁREAS NATURALES PROTEGIDAS SCRIPTA fue posible únicamente debido al apoyo del financiamiento deCONACYT al proyecto de la Red Temática Nacional Áreas Naturales Protegidas RENANP-CONACYT. Agradecemos el invaluable apoyo de la Dirección de Infraestructura Científica y Redes Temáticas deCONACYT para la publicación de esta obra. Con deferente gratitud ÁREAS NATURALES PROTEGIDAS SCRIPTA reconoce la colaboración de Lic. Gerardo R. Hernández García en la edición gráfica editorial para esta revista y de la M.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Crotalus Tancitarensis. the Tancítaro Cross-Banded Mountain Rattlesnake
    Crotalus tancitarensis. The Tancítaro cross-banded mountain rattlesnake is a small species (maximum recorded total length = 434 mm) known only from the upper elevations (3,220–3,225 m) of Cerro Tancítaro, the highest mountain in Michoacán, Mexico, where it inhabits pine-fir forest (Alvarado and Campbell 2004; Alvarado et al. 2007). Cerro Tancítaro lies in the western portion of the Transverse Volcanic Axis, which extends across Mexico from Jalisco to central Veracruz near the 20°N latitude. Its entire range is located within Parque Nacional Pico de Tancítaro (Campbell 2007), an area under threat from manmade fires, logging, avocado culture, and cattle raising. This attractive rattlesnake was described in 2004 by the senior author and Jonathan A. Campbell, and placed in the Crotalus intermedius group of Mexican montane rattlesnakes by Bryson et al. (2011). We calculated its EVS as 19, which is near the upper end of the high vulnerability category (see text for explanation), its IUCN status has been reported as Data Deficient (Campbell 2007), and this species is not listed by SEMARNAT. More information on the natural history and distribution of this species is available, however, which affects its conservation status (especially its IUCN status; Alvarado-Díaz et al. 2007). We consider C. tancitarensis one of the pre-eminent flagship reptile species for the state of Michoacán, and for Mexico in general. Photo by Javier Alvarado-Díaz. Amphib. Reptile Conserv. | http://amphibian-reptile-conservation.org 128 September 2013 | Volume 7 | Number 1 | e71 Copyright: © 2013 Alvarado-Díaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for Amphibian & Reptile Conservation 7(1): 128–170.
    [Show full text]
  • COLUBRIDAE Chwnactis Occipitalis
    REPTILIA: SQUAMATA: COLUBRIDAE Catalogue of American Amphibians and Reptiles. Mahrdt, C.R., K.R. Beaman, P.C. Rosen, and P.A. Holm. 2001. Chionactis occipitalis. Chwnactis occipitalis (Hallowell) Western Shovel-Nosed Snake Rhinostoma occipitale Hallowell 1854:95. Type locality, "Mo- have Desert" (= in the region of the Mojave River, western San Bernardino County, California). Holotype cannot be lo- cated, but is figured in Hallowell (1 859: plate IV, fig. 2a-c). Lamprosom occipitale: Hallowell 1856:3 11. Chionactis occipitale: Cope 1860:241. First use of combina- FIGURE 1. Chionactis occipitalis annulata from Borrego Springs, San Diego County. California (photograph by L.L. Grismer). tion. Chionactis occipitulis: Cooper 1870:66. First use of current combination. Homalosoma occipitale: Miiller 1882: 125. Contio occipitulis: Garman 1884a:9 1. Contia occipitule: Brown 190 1:68 (part). Chioructis occipitalis: Meek 1905: 15. Incorrect subsequent spelling. Sonora occipitalis: Van Denburgh and Slevin 1913:412 (part). CONTENT. Four subspecies are currently recognized: Chionactis occipitalis occipitalis. C. o, annulatu, C. o. klauberi, Wash, Kingston Range, San Bernardino County, California (photograph and C. o. tulpina. by C. Brown). DEFINITION. Chionactis occipitalis is a small colubrid snake (or absent), rather than broad, red saddles between the dark bands with a maximum recorded TL of a live specimen of 425 rnrn on the body and tail (Mahrdt et al. 2001). (Klauber 1951). Scutellation is as follows: dorsal scale rows 15-1 5-15; ventrals 146-176 (146-165, males; 154-176, DESCRIPTIONS. The original description of Chionactis females); subcaudals 37-50 (39-50, males; 37-48, females); occipitalis was published by Hallowell (1854).
    [Show full text]
  • ECOLOGY of a POPULATION of the EARTHSNAKE CONOPSIS BISERIALIS in the MEXICAN TRANSVOLCANIC AXIS
    Herpetological Conservation and Biology 6(3):364–371 Submitted: 5 April 2011; Accepted: 1 November 2011; Published: 31 December 2011. ECOLOGY OF A POPULATION OF THE EARTHSNAKE CONOPSIS BISERIALIS in the MEXICAN TRANSVOLCANIC AXIS 1 1,2 3 OLIVA CASTAÑEDA-GONZALEZ , JAVIER MANJARREZ , IRENE GOYENECHEA , AND VÍCTOR 4 FAJARDO 1Centro de Investigación en Recursos Bióticos, Universidad Autónoma del Estado de México, Toluca Estado de México, CP 50000, México 2Corresponding author, e-mail: [email protected] 3Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, CP 42001, México 4Laboratorio de Ecología de la Conducta, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca Estado de México, CP 50000, México Abstract.—Information about the ecology of Mexican snakes, such as Conopsis biserialis, is minimal. This species has low population densities and may be in decline over much of its historical range, apparently caused by destruction and fragmentation of the temperate forest habitat in central Mexico. We describe general life-history traits of this specialist fossorial species in a natural population from the State of Mexico. We captured 84 snakes from February 2003 to December 2004. Conopsis biserialis has a unimodal abundance pattern of eight to nine months with a peak in the rainy season (June to September). Of the 84 snakes we found, males and females have the same body size, mass, cloacal temperature, and a similar number of ventral scales, but males have longer tails, heads, and more caudal scales than females. We observed few neonates or juveniles during our surveys, and only one adult female was gravid with four palpable embryos.
    [Show full text]
  • Reproductive Mode and Defensive Behaviour of the South American Aquatic Snake Helicops Pastazae (Serpentes: Dipsadidae)
    Herpetology Notes, volume 12: 447-451 (2019) (published online on 01 May 2019) Reproductive mode and defensive behaviour of the South American aquatic snake Helicops pastazae (Serpentes: Dipsadidae) Daniela García-Cobos1,2 ,* and Diego A. Gómez-Sánchez1 Helicops (Wagler, 1830) is a genus of aquatic snakes it is only known from its original description (Shreve, restricted to South America, it occurs between northern 1943), a re-description (Rossman, 1976), one recently Colombia to northern Argentina (Uetz et al., 2018). published dietary study (Almendáriz et al., 2017), and This group is characterized by presenting keeled several checklists (Pérez-Santos and Moreno, 1988; dorsal scales, one internasal scale, as well as dorsally Rivas et al., 2012; Pedroza-Banda et al., 2014; Wallach positioned eyes and nostrils due to their aquatic habitat et al., 2014). Although both Feldman et al. (2015) and (Segall et al., 2016). This genus presents both oviparous Uetz et al. (2018) report this species as viviparous, (egg-laying) and viviparous (live-bearing) species none of them provide any source that corroborates this (Greer, 1966). Of the 17 known species of the genus, statement. In addition, a detailed literature revision did nine are viviparous [H. carinicaudus (Wied-Neuwied, not allow us to find any published conclusive studies nor 1825), H. danieli Amaral, 1938, H. infrataeniatus Jan, observations supporting either reproductive mode for 1865, H. leopardinus (Schlegel, 1837), H. modestus this species. Furthermore, other aspects of the natural Günther, 1861, H. nentur, Costa et al., 2016, H. polylepis history of H. pastazae such as the defensive behaviour Günther, 1861, H. scalaris Jan, 1865, and H.
    [Show full text]