Geologic Map of the Estes Park 30' X 60' Quadrangle, North-Central

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Estes Park 30' X 60' Quadrangle, North-Central Geologic Map of the Estes Park 30’ x 60’ Quadrangle, North-Central Colorado By James C. Cole and William A. Braddock Pamphlet to accompany Scientific Investigations Map 3039 U.S. Department of the Interior U.S. Geological Survey CONVERSION FACTORS Multiply By To obtain centimeters (cm) 0.3937 inches (in.) meters (m) 3.281 feet (ft) kilometers (km) 0.6214 miles (mi) To convert Celsius (°C) to Fahrenheit (°F), use formula (°C x 1.8) + 32 Suggested citation: Cole, J.C., and Braddock, W.A., 2009, Geologic map of the Estes Park 30’ x 60’ quadrangle, north-central Colorado: U.S. Geological Survey Scientific Investigations Map 3039, 1 sheet, scale 1:100,000, pamphlet, 56 p. Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................2 Geography and Geomorphology ........................................................................................................3 Compilation Sources and Methods ...................................................................................................5 Acknowledgments ................................................................................................................................5 Description of Map Units ..............................................................................................................................6 Alluvial Units ..........................................................................................................................................6 Glacial Units ...........................................................................................................................................7 Other Surficial Units .............................................................................................................................8 Post-Laramide Sedimentary Rocks ...................................................................................................8 Post-Laramide Intrusive Rocks ..........................................................................................................8 Post-Laramide Volcanic Rocks ...........................................................................................................9 Laramide Sedimentary and Volcanic Rocks .....................................................................................9 Laramide Intrusive Rocks ..................................................................................................................10 Pre-Cenozoic Sedimentary Rocks ...................................................................................................10 Paleozoic(?) Intrusive Rocks .............................................................................................................12 Mesoproterozoic Intrusive Rocks ....................................................................................................13 Mesoproterozoic and (or) Paleoproterozoic Intrusive Rocks .....................................................14 Paleoproterozoic Intrusive Rocks ....................................................................................................14 Paleoproterozoic Metamorphic Rocks ...........................................................................................15 Geologic Setting ...........................................................................................................................................15 Paleoproterozoic Layered Rocks .....................................................................................................16 Paleoproterozoic Intrusive Rocks ....................................................................................................18 Paleoproterozoic Metamorphism ....................................................................................................19 Mesoproterozoic Intrusive Rocks ....................................................................................................22 Kimberlite .............................................................................................................................................23 Pre-Cenozoic Sedimentary Rocks ...................................................................................................25 Laramide Synorogenic Sedimentary Rocks ...................................................................................26 Laramide Intrusive Rocks ..................................................................................................................27 Post-Laramide Sedimentary Rocks .................................................................................................27 Post-Laramide Intrusive and Volcanic Rocks ................................................................................29 Fluvial Gravel .......................................................................................................................................29 Quaternary Deposits ...................................................................................................................................29 Alluvial Deposits..................................................................................................................................29 Diamicton .............................................................................................................................................32 Glacial Deposits ..................................................................................................................................32 Other Surficial Deposits ....................................................................................................................33 Structure........................................................................................................................................................34 Paleoproterozoic Structures ............................................................................................................34 Mesoproterozoic Structures ............................................................................................................35 Longs Peak-St Vrain Batholith .................................................................................................35 Moose Mountain Shear Zone ..................................................................................................36 iv Laramide Orogeny...............................................................................................................................37 Eastern Margin of the Front Range .........................................................................................37 Boulder-Weld Fault Zone ..........................................................................................................38 Western Margin of the Front Range .......................................................................................38 Sandstone Dikes ........................................................................................................................39 Post-Laramide Structures ................................................................................................................39 Braddock Peak Intrusive-Volcanic Complex .........................................................................40 Colorado River Fault Zone ........................................................................................................40 Block-Glide Landslides .............................................................................................................41 Late Miocene-Pliocene Uplift and River Incision ...................................................................................41 Economic Geology .......................................................................................................................................44 Colorado Mineral Belt ........................................................................................................................44 Coal, Oil, and Gas ................................................................................................................................45 Sand and Gravel ..................................................................................................................................46 Quarry Stone ........................................................................................................................................46 Water ..................................................................................................................................................46 Environmental Geology ...............................................................................................................................47 Landslides, Rockfalls, and Debris Flows .........................................................................................47 Expansive Soils....................................................................................................................................48 Floods ..................................................................................................................................................48 References Cited..........................................................................................................................................49
Recommended publications
  • Trait Ridge Road Guide
    Sign No. 9 Medicine Bow Curve (11,640 feet) succeeded more than 80 years ago in bringing water from Never The sign here points northwest to the Medi­ Summer streams through the Grand Ditch and La Poudre Pass Rocky Mountain National Park cine Bow Mountains which extend into Wyo­ to irrigate the semiarid lands east of the Rockies. He failed to 9 ming, 44 miles away. The Cache la Poudre find sufficient precious metals in Lulu City diggings to establish River twists through the glacial gorge before profitable mines. Broken stone chimneys and rotting founda­ you, separating this point from rounded, tion logs are all that remain of this once bustling mining camp. v 7 This country is also a favorite home of the beaver. Trait Ridge brownish Specimen Mountain to the west. Its color provides a clue to the mountain's orgin, Sign No. 12 Shadow Mountain National as a volcano, and the cliffs at Iceberg Lake Recreation Area are of lava from this source. Shadow Mountain Lake and Lake Granby Road Guide Sign No. 10 Continental Divide, Milner Pass are two reservoirs of the Colorado — Big (10,758 feet) 12 Thompson Project, built and operated by the Bureau of Reclamation, U.S. Department of Surprise! You thought the Continental Divide \ 7 the Interior. From here water flows through would be the highest point on your trip. But Grand Lake and the 13.1-mile Adams Tunnel this delightful spot where an undecided rain­ to Estes Park. There, east of the Continental drop might flow either to the Atlantic or to \10/ Divide, it stairsteps down through penstocks the Pacific is more than a thousand feet below and turbines producing electric power and finally emptying into the Alpine Visitor Center, and 1,425 feet be- reservoirs and irrigation canals east of the Front Range.
    [Show full text]
  • Travel Summary
    Travel Summary – All Trips and Day Trips Retirement 2016-2020 Trips (28) • Relatives 2016-A (R16A), September 30-October 20, 2016, 21 days, 441 photos • Anza-Borrego Desert 2016-A (A16A), November 13-18, 2016, 6 days, 711 photos • Arizona 2017-A (A17A), March 19-24, 2017, 6 days, 692 photos • Utah 2017-A (U17A), April 8-23, 2017, 16 days, 2214 photos • Tonopah 2017-A (T17A), May 14-19, 2017, 6 days, 820 photos • Nevada 2017-A (N17A), June 25-28, 2017, 4 days, 515 photos • New Mexico 2017-A (M17A), July 13-26, 2017, 14 days, 1834 photos • Great Basin 2017-A (B17A), August 13-21, 2017, 9 days, 974 photos • Kanab 2017-A (K17A), August 27-29, 2017, 3 days, 172 photos • Fort Worth 2017-A (F17A), September 16-29, 2017, 14 days, 977 photos • Relatives 2017-A (R17A), October 7-27, 2017, 21 days, 861 photos • Arizona 2018-A (A18A), February 12-17, 2018, 6 days, 403 photos • Mojave Desert 2018-A (M18A), March 14-19, 2018, 6 days, 682 photos • Utah 2018-A (U18A), April 11-27, 2018, 17 days, 1684 photos • Europe 2018-A (E18A), June 27-July 25, 2018, 29 days, 3800 photos • Kanab 2018-A (K18A), August 6-8, 2018, 3 days, 28 photos • California 2018-A (C18A), September 5-15, 2018, 11 days, 913 photos • Relatives 2018-A (R18A), October 1-19, 2018, 19 days, 698 photos • Arizona 2019-A (A19A), February 18-20, 2019, 3 days, 127 photos • Texas 2019-A (T19A), March 18-April 1, 2019, 15 days, 973 photos • Death Valley 2019-A (D19A), April 4-5, 2019, 2 days, 177 photos • Utah 2019-A (U19A), April 19-May 3, 2019, 15 days, 1482 photos • Europe 2019-A (E19A), July
    [Show full text]
  • Principles and Practices for Restoration of Ponderosa Pine and Dry Mixed
    United States Department of Agriculture Principles and Practices for the Restoration of Ponderosa Pine and Dry Mixed-Conifer Forests of the Colorado Front Range Robert N. Addington, Gregory H. Aplet, Mike A. Battaglia, Jennifer S. Briggs, Peter M. Brown, Antony S. Cheng, Yvette Dickinson, Jonas A. Feinstein, Kristen A. Pelz, Claudia M. Regan, Jim Thinnes, Rick Truex, Paula J. Fornwalt, Benjamin Gannon, Chad W. Julian, Jeffrey L. Underhill, Brett Wolk Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-373 January 2018 Addington, Robert N.; Aplet, Gregory H.; Battaglia, Mike A.; Briggs, Jennifer S.; Brown, Peter M.; Cheng, Antony S.; Dickinson, Yvette; Feinstein, Jonas A.; Pelz, Kristen A.; Regan, Claudia M.; Thinnes, Jim; Truex, Rick; Fornwalt, Paula J.; Gannon, Benjamin; Julian, Chad W.; Underhill, Jeffrey L.; Wolk, Brett. 2018. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range. RMRS-GTR-373. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 121 p. Abstract Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks.The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest restoration exist. In this report, we present a science-based framework for managers to develop place-based approaches to forest restoration of Front Range ponderosa pine and dry mixed-conifer forests. We first present ecological information describing how Front Range forest structure and composition are shaped at multiple scales by interactions among topography, natural disturbances such as fire, and forest developmental processes.
    [Show full text]
  • Hiking in the Kawuneeche Valley Rocky Mountain
    National Park Rocky Mountain National Park Service Hiking in the Kawuneeche Valley Adams Falls (East Inlet Trailhead) This easy 1/3 mile hike leads to a small, pleasant waterfall. If you wish to go further, past the falls, you will come to a large, grassy, glaciated valley with a river running through it. Moose are sometimes sighted in this valley. Many types of wildflowers are found in this area. (79’gain) Cascade Falls (North Inlet Trailhead) Photogenic Cascade Falls is 3.4 miles into the North Inlet trail. This easy hike passes through an open meadow where marmots are often found, and by a river that winds through a lodgepole pine forest. Fishing is good for small brook trout and an occasional brown trout. Allow about 3-4 hours for hiking this trail. (300’gain) Lulu City (Colorado River Trailhead) A flowered field is all that remains of this once booming mining town. Pass by the remains of log cabins and look for tailings from Shipler Mine about 2 miles into the trail. The trail parallels the Colorado River and passes meadows on this easy to moderately difficult 7.4-mile round trip hike. (350’gain) Lulu City/Yellowstone Loop (Colorado River Trailhead) After passing Shipler’s cabins, you will come to a sign that will designate Lulu City to the left and Little Yellowstone to the right. Stay right at the Y. Follow the trail all the way to the Grand Ditch. Little Yellowstone is a miniature version of the Grand Canyon of Yellowstone, formed of stark gray volcanic rock.
    [Show full text]
  • Denudation History and Internal Structure of the Front Range and Wet Mountains, Colorado, Based on Apatite-Fission-Track Thermoc
    NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 41 Denudation history and internal structure of the Front Range and Wet Mountains, Colorado, based on apatite­fission­track thermochronology 1 2 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801Shari A. Kelley and Charles E. Chapin 2New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract An apatite fission­track (AFT) partial annealing zone (PAZ) that developed during Late Cretaceous time provides a structural datum for addressing questions concerning the timing and magnitude of denudation, as well as the structural style of Laramide deformation, in the Front Range and Wet Mountains of Colorado. AFT cooling ages are also used to estimate the magnitude and sense of dis­ placement across faults and to differentiate between exhumation and fault­generated topography. AFT ages at low elevationX along the eastern margin of the southern Front Range between Golden and Colorado Springs are from 100 to 270 Ma, and the mean track lengths are short (10–12.5 µm). Old AFT ages (> 100 Ma) are also found along the western margin of the Front Range along the Elkhorn thrust fault. In contrast AFT ages of 45–75 Ma and relatively long mean track lengths (12.5–14 µm) are common in the interior of the range. The AFT ages generally decrease across northwest­trending faults toward the center of the range. The base of a fossil PAZ, which separates AFT cooling ages of 45– 70 Ma at low elevations from AFT ages > 100 Ma at higher elevations, is exposed on the south side of Pikes Peak, on Mt.
    [Show full text]
  • ROCKY MOUNTAIN National Park CO LO 1^^.00
    ROCKY MOUNTAIN National Park CO LO 1^^.00 UNITED STATES RAILROAD ADMINISTRATION NATIONAL PARK. SERIES Copyright by WiswaU The Village of Estes Park nestles in a quiet little valley, surrounded by mountains Page two An Appreciation of Rocky Mountain National Park By ENOS A. MILLS, Author of "Wild Life on the Rockies," "The Rocky Mountain Wonderland," etc. Written Especially fer the United States Railroad Administration j]HE Rocky Mountain National Park is a marvelous grouping of gentle­ ness and grandeur; an eloquent, wordless hymn, sung in silent, poetic pictures; a wilderness mountain world of groves and grass plots, crags and canyons, rounded lakes with shadow-matted shores that rest in peace within the purple forest. There are wild flowers of every color, and many a silken meadow edged with ferns. Brokenness and beauty, terrace upon terrace, a magnificent hanging wild garden. Over these terraces waters rush and pour. From ice-sculptured, snow-piled peaks, young and eager streams leap in white cascades between crowding cliffs and pines. Through this wildness winds the trail, with its secrets of the centuries, where adventures come and go and where the magic camp fire blossoms in the night. In these primeval scenes the grizzly bear gives to the wilderness its master spell; the mountain ram poses on the cliff; the laughing, varied voice of the coyote echoes when the afterglow falls; the home-loving beaver builds his willow-fringed hut; the birds sing; the cheerful chipmunk frolics and never grows up; and here the world stays young. The Rocky Mountain National Park holds adventure for every visitor.
    [Show full text]
  • To See the Hike Archive
    Geographical Area Destination Trailhead Difficulty Distance El. Gain Dest'n Elev. Comments Allenspark 932 Trail Near Allenspark A 4 800 8580 Allenspark Miller Rock Riverside Dr/Hwy 7 TH A 6 700 8656 Allenspark Taylor and Big John Taylor Rd B 7 2300 9100 Peaks Allenspark House Rock Cabin Creek Rd A 6.6 1550 9613 Allenspark Meadow Mtn St Vrain Mtn TH C 7.4 3142 11632 Allenspark St Vrain Mtn St Vrain Mtn TH C 9.6 3672 12162 Big Thompson Canyon Sullivan Gulch Trail W of Waltonia Rd on Hwy A 2 941 8950 34 Big Thompson Canyon 34 Stone Mountain Round Mtn. TH B 8 2100 7900 Big Thompson Canyon 34 Mt Olympus Hwy 34 B 1.4 1438 8808 Big Thompson Canyon 34 Round (Sheep) Round Mtn. TH B 9 3106 8400 Mountain Big Thompson Canyon Hwy 34 Foothills Nature Trail Round Mtn TH EZ 2 413 6240 to CCC Shelter Bobcat Ridge Mahoney Park/Ginny Bobcat Ridge TH B 10 1500 7083 and DR trails Bobcat Ridge Bobcat Ridge High Bobcat Ridge TH B 9 2000 7000 Point Bobcat Ridge Ginny Trail to Valley Bobcat Ridge TH B 9 1604 7087 Loop Bobcat Ridge Ginny Trail via Bobcat Ridge TH B 9 1528 7090 Powerline Tr Boulder Chautauqua Park Royal Arch Chautauqua Trailhead by B 3.4 1358 7033 Rgr. Stn. Boulder County Open Space Mesa Trail NCAR Parking Area B 7 1600 6465 Boulder County Open Space Gregory Canyon Loop Gregory Canyon Rd TH B 3.4 1368 7327 Trail Boulder Open Space Heart Lake CR 149 to East Portal TH B 9 2000 9491 Boulder Open Space South Boulder Peak Boulder S.
    [Show full text]
  • Colorado Fourteeners Checklist
    Colorado Fourteeners Checklist Rank Mountain Peak Mountain Range Elevation Date Climbed 1 Mount Elbert Sawatch Range 14,440 ft 2 Mount Massive Sawatch Range 14,428 ft 3 Mount Harvard Sawatch Range 14,421 ft 4 Blanca Peak Sangre de Cristo Range 14,351 ft 5 La Plata Peak Sawatch Range 14,343 ft 6 Uncompahgre Peak San Juan Mountains 14,321 ft 7 Crestone Peak Sangre de Cristo Range 14,300 ft 8 Mount Lincoln Mosquito Range 14,293 ft 9 Castle Peak Elk Mountains 14,279 ft 10 Grays Peak Front Range 14,278 ft 11 Mount Antero Sawatch Range 14,276 ft 12 Torreys Peak Front Range 14,275 ft 13 Quandary Peak Mosquito Range 14,271 ft 14 Mount Evans Front Range 14,271 ft 15 Longs Peak Front Range 14,259 ft 16 Mount Wilson San Miguel Mountains 14,252 ft 17 Mount Shavano Sawatch Range 14,231 ft 18 Mount Princeton Sawatch Range 14,204 ft 19 Mount Belford Sawatch Range 14,203 ft 20 Crestone Needle Sangre de Cristo Range 14,203 ft 21 Mount Yale Sawatch Range 14,200 ft 22 Mount Bross Mosquito Range 14,178 ft 23 Kit Carson Mountain Sangre de Cristo Range 14,171 ft 24 Maroon Peak Elk Mountains 14,163 ft 25 Tabeguache Peak Sawatch Range 14,162 ft 26 Mount Oxford Collegiate Peaks 14,160 ft 27 Mount Sneffels Sneffels Range 14,158 ft 28 Mount Democrat Mosquito Range 14,155 ft 29 Capitol Peak Elk Mountains 14,137 ft 30 Pikes Peak Front Range 14,115 ft 31 Snowmass Mountain Elk Mountains 14,099 ft 32 Windom Peak Needle Mountains 14,093 ft 33 Mount Eolus San Juan Mountains 14,090 ft 34 Challenger Point Sangre de Cristo Range 14,087 ft 35 Mount Columbia Sawatch Range
    [Show full text]
  • Front Range Floods Teach Guide
    National Park Service Rocky Mountain U.S. Department of Interior Rocky Mountain National Park Front Range Floods Teacher Guide Table of Contents Rocky Mountain National Park.................................................................................................1 Teacher Guides..............................................................................................................................2 Rocky Mountain National Park Education Program Goals...................................................2 Schedule an Education Program with a Ranger.......................................................................2 Front Range Floods Introduction........................................................................................................................4 Precipitation Patterns Along The Front Range..............................................................5 Colorado Flood Events.....................................................................................................6 Flooding in Rocky Mountain National Park...............................................................12 History of Floodplain Management in the United States..........................................14 Front Range Floods Resources Glossary.............................................................................................................................20 References.........................................................................................................................22 Rocky Mountain National Park Rocky Mountain
    [Show full text]
  • A Natural Resource Condition Assessment for Rocky Mountain National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center A Natural Resource Condition Assessment for Rocky Mountain National Park Natural Resource Report NPS/NRPC/WRD/NRR—2010/228 ON THE COVER Rocky Mountain National Park Photograph by: Billy Schweiger A Natural Resource Condition Assessment for Rocky Mountain National Park Natural Resource Report NPS/NRPC/WRD/NRR—2010/228 David M. Theobald1,2 Jill S. Baron2,3 Peter Newman1 Barry Noon4 John B. Norman III1,2 Ian Leinwand1 Sophia E. Linn1 Richard Sherer4 Katherine E. Williams2,5 Melannie Hartman2 1Department of Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO 80523-1480 2Natural Resource Ecology Lab, Colorado State University, Fort Collins, CO 80523-1499 3U.S. Geological Survey, Fort Collins, CO 80523 4Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523-1474 5Current address: Department of Biology, University of Wyoming, Laramie, WY 82071 This report was prepared under Task Order J2380060103 (Cooperative Agreement #H1200040001) July 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application.
    [Show full text]
  • Rocky Mountain National Park Lawn Lake Flood Interpretive Area (Elevation 8,640 Ft)
    1 NCSS Conference 2001 Field Tour -- Colorado Rocky Mountains Wednesday, June 27, 2001 7:00 AM Depart Ft. Collins Marriott 8:30 Arrive Rocky Mountain National Park Lawn Lake Flood Interpretive Area (elevation 8,640 ft) 8:45 "Soil Survey of Rocky Mountain National Park" - Lee Neve, Soil Survey Project Leader, Natural Resources Conservation Service 9:00 "Correlation and Classification of the Soils" - Thomas Hahn, Soil Data Quality Specialist, MLRA Office 6, Natural Resources Conservation Service 9:15-9:30 "Interpretive Story of the Lawn Lake Flood" - Rocky Mountain National Park Interpretive Staff, National Park Service 10:00 Depart 10:45 Arrive Alpine Visitors Center (elevation 11,796 ft) 11:00 "Research Needs in the National Parks" - Pete Biggam, Soil Scientist, National Park Service 11:05 "Pedology and Biogeochemistry Research in Rocky Mountain National Park" - Dr. Eugene Kelly, Colorado State University 11:25 - 11:40 "Soil Features and Geologic Processes in the Alpine Tundra"- Mike Petersen and Tim Wheeler, Soil Scientists, Natural Resources Conservation Service Box Lunch 12:30 PM Depart 1:00 Arrive Many Parks Curve Interpretive Area (elevation 9,620 ft.) View of Valleys and Glacial Moraines, Photo Opportunity 1:30 Depart 3:00 Arrive Bobcat Gulch Fire Area, Arapaho-Roosevelt National Forest 3:10 "Fire History and Burned Area Emergency Rehabilitation Efforts" - Carl Chambers, U. S. Forest Service 3:40 "Involvement and Interaction With the Private Sector"- Todd Boldt; District Conservationist, Natural Resources Conservation Service 4:10 "Current Research on the Fire" - Colorado State University 4:45 Depart 6:00 Arrive Ft. Collins Marriott 2 3 Navigator’s Narrative Tim Wheeler Between the Fall River Visitors Center and the Lawn Lake Alluvial Debris Fan: This Park, or open grassy area, is called Horseshoe Park and is the tail end of the Park’s largest valley glacier.
    [Show full text]
  • 50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a Great Department
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Earth & Atmospheric Sciences Faculty Publications Earth & Atmospheric Sciences 2020 50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a Great Department William Henry Hoyt Follow this and additional works at: https://digscholarship.unco.edu/easfacpub 50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a great Department By William H. Hoyt, Ph. D. University of Northern Colorado Department of Earth Sciences (Earth & Atmospheric Sciences) 1970-2020 1 1956-1970s: THE FIRST YEARS, Tollefson the Magnificent The first tale I ever heard about how the Department of Earth Sciences started hearkens out of the mid-1950s. Oscar W. Tollefson, who had almost graduated from the Univ. of Colorado (Ph D in geology), found himself sitting next to Colorado State College (CSC) President Bill Ross on a commercial flight between Washington, D.C. and Denver. Tolley, as he was universally known in professional circles, was the loquacious sort and so of course he struck up a conversation with a guy who, it turns out, was an amateur rock , fossil, and mineral collector. Bill Ross came from a background in buildings and grounds and knew a lot about earth materials and weather! Though we don’t know exactly what was said in that four hours, we do know that Bill Ross recognized a rare enthusiasm for teaching and learning in the young Tolley. Ross also probably recognized that Tolley’s persuasiveness and persistence would go a long way at the growing College. The Earth Sciences academic program was founded at Colorado State College (CSC) in 1956 by Dr.
    [Show full text]