The Influence of Cell Wall Composition on Flower Development and Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Cell Wall Composition on Flower Development and Reproduction G C A T T A C G G C A T genes Review Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction José Erik Cruz-Valderrama, Judith Jazmin Bernal-Gallardo, Humberto Herrera-Ubaldo and Stefan de Folter * Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), Irapuato CP 36824, Guanajuato, Mexico; [email protected] (J.E.C.-V.); [email protected] (J.J.B.-G.); [email protected] (H.H.-U.) * Correspondence: [email protected] Abstract: Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall—cellulose, hemicellulose, and pectins—to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins. Keywords: flower development; cell wall; remodeling enzymes; cellulose; hemicellulose; pectin Citation: Cruz-Valderrama, J.E.; Bernal-Gallardo, J.J.; Herrera-Ubaldo, H.; de Folter, S. Building a Flower: 1. Introduction The Influence of Cell Wall The process of flower development involves the formation of very complex structures. Composition on Flower Development Flowers generally arise from the inflorescence meristem, where cellular differentiation and Reproduction. Genes 2021, 12, processes give rise to specialized structures involved in all the aspects of plant reproduction. 978. https://doi.org/10.3390/ Once the flower primordium is formed, specific changes can be observed in this area; genes12070978 cell growth, division, and differentiation make up tissues with different identities and functions [1]. A large part of the angiosperms shows a relatively conserved arrangement of Academic Editor: Christian Chevalier the floral whorls (Figure1). From the inside out, we can find the gynoecium, the female structure of the flower which houses the ovules, surrounded by the androecium, the male Received: 30 May 2021 part of the flower, represented by the stamens and, where pollen grains are produced. The Accepted: 23 June 2021 corolla, made up of vegetative structures that present a wide range of colors, helping to Published: 26 June 2021 attract specific pollinators, and the most outside whorl is the calyx, where the sepals protect the floral structures formed towards the center of the flower [2,3]. The formation of each Publisher’s Note: MDPI stays neutral whorl involves specific changes at the cellular level where cell division, expansion, and with regard to jurisdictional claims in published maps and institutional affil- cell death intervene finely to generate the female and male gametes that will eventually iations. come together in the fertilization process, giving origin to the seeds that ensure the next generation of plants (Figure1). Flower development has been finely described for plant species such as Arabidopsis, Petunia, and Antirrhinum. For these species, several genes (most of them transcription factors) are known to guide the differentiation of the floral whorls [1,4]. Knowledge from these model species suggests that at the molecular level, Copyright: © 2021 by the authors. there is a core mechanism that is conserved across the great variety of flowering plants [5]. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Genes 2021, 12, 978. https://doi.org/10.3390/genes12070978 https://www.mdpi.com/journal/genes Genes 2021, 12, x FOR PEER REVIEW 2 of 17 Genes 2021, 12, 978 2 of 16 Figure 1. Flower development is related to cellular processes where the cell wall actively participates. In the earliest stages Figure 1. Flower development is related to cellular processes where the cell wall actively partici- of flower development, cell proliferation is highly active. Up to Stage 3 of floral development, it can be seen how the pates. In the earliest stages of flower development, cell proliferation is highly active. Up to Stage 3 calyx is already shown in the shape of a primordium, differentiated from the central structure that will give rise to the of floral development, it can be seen how the calyx is already shown in the shape of a primordium, other threedifferentiated flower whorls. from Cell the proliferation central structure and differentiation that will give processes rise to the are other essential three in flower these whorls. steps, where Cell the cell wall is actively involved.proliferation In Stage and 6, differentiation the structures processes of the already are essential differentiated in these floral steps, whorls where are the conspicuously cell wall is ac- observed, where the sepals alreadytively involved. cover the In innermost Stage 6, the structures. structures Later of the in Stagealready 8, thedifferentiated marginal meristem floral whorls of the are carpel conspicu- is a structure that is already presentously andobserved, will give where rise tothe tissues sepals such already as the cover placenta the innermost and ovules. structures. For Stage Later 9, a shapedin Stage septum 8, the mar- can be perfectly recognized.ginal At Stagemeristem 12, theof the style carpel and is transmitting a structure tractthat is are already differentiated present and as well will asgive the rise valves, to tissues and thesuch margins of the valves beginas the to be placenta morphologically and ovules. distinct. For Stage The 9, a petals shaped and septum the stamens can be areperfect structuresly recognized. where theAt S cellulartage 12, expansion is determinantthe for style the and growth transmitting of the organs. tract Inare Stage differentiated 13, the gynoecium as well as is the fully valves, developed, and the with margins anthesis of the and self-pollination valves begin to be morphologically distinct. The petals and the stamens are structures where the of the flower taking place. Programmed cell death is detected in the abscission zones where the organs open first by the cellular expansion is determinant for the growth of the organs. In Stage 13, the gynoecium is fully separation of the cells. developed, with anthesis and self-pollination of the flower taking place. Programmed cell death is detected in the abscission zones where the organs open first by the separation of the cells. The involvement of cell wall-related genes has been described during plant develop- ment. The detection of different cell wall components in different plant organs, including The involvement of cell wall-related genes has been described during plant develop- roots, leaves, stems, and flowers has been reported [6]. In addition, work has been per- ment. The detection of different cell wall components in different plant organs, including formed analyzing cell wall composition and dynamics during carpel medial domain roots, leaves, stems, and flowers has been reported [6]. In addition, work has been per- development [7]. The plant cell wall is a dynamic structure composed mainly of three formed analyzingtypes cell of wall polysaccharides: composition and cellulose, dynamics hemicelluloses, during carpel and medial pectins. domain These de- polymers interact velopment [7]. Theand plant assemble cell wall to constitute is a dynamic a network structure with composed structural proteinsmainly of that three are types inserted in a gel-like of polysaccharides:matrix cellulose, through hemicelluloses, different types and of chemicalpectins. These bonds polymers and physical interact arrangements and [8]. This assemble to constitutearchitecture a network allows with plant structural cells to maintain proteins a definedthat are shape, inserted confer in a mechanical gel-like support, and matrix through keepdifferent intercellular types of communicationchemical bonds and in the physical different arrangements organs. The [8]. composition This ar- and chemical chitecture allowsstructure plant cells of theseto maintain polysaccharides a defined mayshape change, confer during mechanical plant support, development and in response to keep intercellularenvironmental communication and in endogenous the different signals organs. [9]. The composition ofand the chemical cell wall varies depend- structure of theseing polysaccharides on the species, themay cell change type, during and even plant the development subcellular domain in response within to the cell wall of environmental oneand singleendogenous cell [9]. signals This variation [9]. The incomp the contentosition of suggests the cell that wall the varies plant de- cell wall is highly pending on the dynamicspecies, the and cell can type, be modulated and even the in quitesubcellular specific domain ways. Thewithin cell the wall cell plays wall an essential role of one single cellin [9]. the This morphogenesis variation in ofthe plants. content As suggests mentioned that above, the plant gene cell regulatory wall is highly networks underlying dynamic and canthe be differentiation modulated in quite of the specific floral meristem ways. The and cell floral
Recommended publications
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Ap09 Biology Form B Q2
    AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.
    [Show full text]
  • Determining the Transgene Containment Level Provided by Chloroplast Transformation
    Determining the transgene containment level provided by chloroplast transformation Stephanie Ruf, Daniel Karcher, and Ralph Bock* Max-Planck-Institut fu¨r Molekulare Pflanzenphysiologie, Am Mu¨hlenberg 1, D-14476 Potsdam-Golm, Germany Edited by Maarten Koornneef, Wageningen University and Research Centre, Wageningen, The Netherlands, and approved February 28, 2007 (received for review January 2, 2007) Plastids (chloroplasts) are maternally inherited in most crops. cybrids (8, 9), which has been suggested to contribute substan- Maternal inheritance excludes plastid genes and transgenes from tially to the observed paternal leakage (2). However, to what pollen transmission. Therefore, plastid transformation is consid- extent hybrid effects and/or differences in the plastid mutations ered a superb tool for ensuring transgene containment and im- and markers used in the different studies account for the proving the biosafety of transgenic plants. Here, we have assessed different findings is unknown, and thus, reliable quantitative the strictness of maternal inheritance and the extent to which data on occasional paternal plastid transmission are largely plastid transformation technology confers an increase in transgene lacking. Because such data are of outstanding importance to the confinement. We describe an experimental system facilitating critical evaluation of the biosafety of the transplastomic tech- stringent selection for occasional paternal plastid transmission. In nology as well as to the mathematical modeling of outcrossing a large screen, we detected low-level paternal inheritance of scenarios, we set out to develop an experimental system suitable transgenic plastids in tobacco. Whereas the frequency of transmis- for determining the frequency of occasional paternal transmis- ؊5 .sion into the cotyledons of F1 seedlings was Ϸ1.58 ؋ 10 (on 100% sion of plastid transgenes cross-fertilization), transmission into the shoot apical meristem We have set up the system for tobacco (Nicotiana tabacum) for was significantly lower (2.86 ؋ 10؊6).
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • Specification and Maintenance of the Floral Meristem: Interactions Between Positively- Acting Promoters of Flowering and Negative Regulators
    SPECIAL SECTION: EMBRYOLOGY OF FLOWERING PLANTS Specification and maintenance of the floral meristem: interactions between positively- acting promoters of flowering and negative regulators Usha Vijayraghavan1,*, Kalika Prasad1 and Elliot Meyerowitz2,* 1Department of MCB, Indian Institute of Science, Bangalore 560 012, India 2Division of Biology 156–29, California Institute of Technology, Pasadena, CA 91125, USA meristems that give rise to modified leaves – whorls of A combination of environmental factors and endoge- nous cues trigger floral meristem initiation on the sterile organs (sepals and petals) and reproductive organs flanks of the shoot meristem. A plethora of regulatory (stamens and carpels). In this review we focus on mecha- genes have been implicated in this process. They func- nisms by which interactions between positive and nega- tion either as activators or as repressors of floral ini- tive regulators together pattern floral meristems in the tiation. This review describes the mode of their action model eudicot species A. thaliana. in a regulatory network that ensures the correct temporal and spatial control of floral meristem specification, its maintenance and determinate development. Maintenance of the shoot apical meristem and transitions in lateral meristem fate Keywords: Arabidopsis thaliana, floral activators, flo- ral mesitem specification, floral repressors. The maintenance of stem cells is brought about, at least in part, by a regulatory feedback loop between the ho- THE angiosperm embryo has a well established apical- meodomain transcription factor WUSCHEL (WUS) and basal/polar axis defined by the positions of the root and genes of the CLAVATA (CLV) signaling pathway2. WUS shoot meristems. Besides this, a basic radial pattern is is expressed in the organizing centre and confers a stem also established during embryogenesis.
    [Show full text]
  • Cell Wall Loosening by Expansins1
    Plant Physiol. (1998) 118: 333–339 Update on Cell Growth Cell Wall Loosening by Expansins1 Daniel J. Cosgrove* Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802 In his 1881 book, The Power of Movement in Plants, Darwin alter the bonding relationships of the wall polymers. The described a now classic experiment in which he directed a growing wall is a composite polymeric structure: a thin tiny shaft of sunlight onto the tip of a grass seedling. The weave of tough cellulose microfibrils coated with hetero- region below the coleoptile tip subsequently curved to- glycans (hemicelluloses such as xyloglucan) and embedded ward the light, leading to the notion of a transmissible in a dense, hydrated matrix of various neutral and acidic growth stimulus emanating from the tip. Two generations polysaccharides and structural proteins (Bacic et al., 1988; later, follow-up work by the Dutch plant physiologist Fritz Carpita and Gibeaut, 1993). Like other polymer compos- Went and others led to the discovery of auxin. In the next ites, the plant cell wall has rheological (flow) properties decade, another Dutchman, A.J.N. Heyn, found that grow- intermediate between those of an elastic solid and a viscous ing cells responded to auxin by making their cell walls liquid. These properties have been described using many more “plastic,” that is, more extensible. This auxin effect different terms: plasticity, viscoelasticity, yield properties, was partly explained in the early 1970s by the discovery of and extensibility are among the most common. It may be “acid growth”: Plant cells grow faster and their walls be- attractive to think that wall stress relaxation and expansion come more extensible at acidic pH.
    [Show full text]
  • Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
    G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris.
    [Show full text]
  • Morphological Description of Plants: New Perspectives in Development and Evolution
    ® International Journal of Plant Developmental Biology ©2010 Global Science Books Morphological Description of Plants: New Perspectives in Development and Evolution 1* 2 Emilio Cervantes • Juana G . de Diego 1 IRNASA-CSIC. Apartado 257. 37080. Salamanca. Spain 2 Dept Bioquímica y Biología Molecular. Campus Miguel de Unamuno. Universidad de Salamanca. Spain Corresponding author : * [email protected] ABSTRACT The morphological description of plants has been fundamental in the history of botany and provided the keys for taxonomy. Nevertheless, in biology, a discipline governed by the interest in function and based on reductionist approaches, the analysis of forms has been relegated to second place. Plants contain organs and structures that resemble geometrical forms. Plant ontogeny may be seen as a sequence of growth processes including periods of continuous growth with modification that stop at crucial points often represented by structures of remarkable similarity to geometrical figures. Instead of the tradition in developmental studies giving more importance to animal models, we propose that the modular type of plant development may serve to remark conceptual aspects in that may be useful in studies with animals and contribute to original views of evolution. _____________________________________________________________________________________________________________ Keywords: concepts, description, geometry, structure INTRODUCTION: PLANTS OFFER NEW reflects a more general situation in Biology, a discipline APPROACHES TO DEVELOPMENT that has matured from the experimental protocols and views of biochemistry, where the predominant role of experimen- The study of development is today a major biological disci- tation has contributed to a decline in basic aspects that need pline. Although it was traditionally more focused in animal to be more descriptive, such as those related with mor- systems, increased emphasis in plant development may phology.
    [Show full text]
  • Phyllotaxis: a Remarkable Example of Developmental Canalization in Plants Christophe Godin, Christophe Golé, Stéphane Douady
    Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Golé, Stéphane Douady To cite this version: Christophe Godin, Christophe Golé, Stéphane Douady. Phyllotaxis: a remarkable example of devel- opmental canalization in plants. 2019. hal-02370969 HAL Id: hal-02370969 https://hal.archives-ouvertes.fr/hal-02370969 Preprint submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Gol´e,St´ephaneDouady September 2019 Abstract Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenenesis, morphogenetic processes are constrained to operate within the context of the current organism being built, which is thought to bias or to limit phenotype variability. One universal aspect of this context is the shape of the organism itself that progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where conspicuous patterns are formed by the lateral organs produced by apical meristems.
    [Show full text]
  • Plant Development Series Editor Paul M
    VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Series Editor Paul M. Wassarman Department of Developmental and Regenerative Biology Mount Sinai School of Medicine New York, NY 10029-6574 USA Olivier Pourquié Institut de Génétique et de Biologie Cellulaire et Moléculaire (IGBMC) Inserm U964, CNRS (UMR 7104) Université de Strasbourg Illkirch France Editorial Board Blanche Capel Duke University Medical Center Durham, NC, USA B. Denis Duboule Department of Zoology and Animal Biology NCCR ‘Frontiers in Genetics’ Geneva, Switzerland Anne Ephrussi European Molecular Biology Laboratory Heidelberg, Germany Janet Heasman Cincinnati Children’s Hospital Medical Center Department of Pediatrics Cincinnati, OH, USA Julian Lewis Vertebrate Development Laboratory Cancer Research UK London Research Institute London WC2A 3PX, UK Yoshiki Sasai Director of the Neurogenesis and Organogenesis Group RIKEN Center for Developmental Biology Chuo, Japan Philippe Soriano Department of Developmental and Regenerative Biology Mount Sinai Medical School New York, USA Cliff Tabin Harvard Medical School Department of Genetics Boston, MA, USA Founding Editors A. A. Moscona Alberto Monroy VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Edited by MARJA C. P. TIMMERMANS Cold Spring Harbor Laboratory Cold Spring Harbor New York, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32, Jamestown Road, London NW1 7BY, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK First edition 2010 Copyright Ó 2010 Elsevier Inc.
    [Show full text]
  • The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides
    Carbohydrate Research 344 (2009) 1879–1900 Contents lists available at ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres The structure, function, and biosynthesis of plant cell wall pectic polysaccharides Kerry Hosmer Caffall a, Debra Mohnen a,b,* a University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, 315 Riverbend Road Athens, GA 30602, United States b DOE BioEnergy Science Center (BESC), 315 Riverbend Road Athens, GA 30602, United States article info abstract Article history: Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper Received 18 November 2008 growth and development of plants. The carbohydrate components make up 90% of the primary wall, Received in revised form 4 May 2009 and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that Accepted 6 May 2009 are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abun- Available online 2 June 2009 dant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the pres- ence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, Keywords: substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that Cell wall polysaccharides consists of -1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin Galacturonan a Glycosyltransferases synthesis is essential to the study of cell wall function in plant growth and development and for maxi- Homogalacturonan mizing the value and use of plant polysaccharides in industry and human health.
    [Show full text]
  • Plant:Animal Cell Comparison
    Comparing Plant And Animal Cells http://khanacademy.org/video?v=Hmwvj9X4GNY Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle in some plant cells that stores starch. Amyloplasts are found in starchy plants like tubers and fruits. cell membrane - the thin layer of protein and fat that surrounds the cell, but is inside the cell wall. The cell membrane is semipermeable, allowing some substances to pass into the cell and blocking others. cell wall - a thick, rigid membrane that surrounds a plant cell. This layer of cellulose fiber gives the cell most of its support and structure. The cell wall also bonds with other cell walls to form the structure of the plant. chloroplast - an elongated or disc-shaped organelle containing chlorophyll. Photosynthesis (in which energy from sunlight is converted into chemical energy - food) takes place in the chloroplasts. chlorophyll - chlorophyll is a molecule that can use light energy from sunlight to turn water and carbon dioxide gas into glucose and oxygen (i.e. photosynthesis). Chlorophyll is green. cytoplasm - the jellylike material outside the cell nucleus in which the organelles are located. Golgi body - (or the golgi apparatus or golgi complex) a flattened, layered, sac-like organelle that looks like a stack of pancakes and is located near the nucleus. The golgi body modifies, processes and packages proteins, lipids and carbohydrates into membrane-bound vesicles for "export" from the cell. lysosome - vesicles containing digestive enzymes. Where the digestion of cell nutrients takes place. mitochondrion - spherical to rod-shaped organelles with a double membrane.
    [Show full text]