Automorphic Integral Transforms for Classical Groups I: Endoscopy Correspondences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:Math/9911264V1 [Math.NT] 1 Nov 1999
Annals of Mathematics, 150 (1999), 807–866 On explicit lifts of cusp forms from GLm to classical groups By David Ginzburg, Stephen Rallis, and David Soudry* Introduction In this paper, we begin the study of poles of partial L-functions LS(σ ⊗ τ,s), where σ ⊗ τ is an irreducible, automorphic, cuspidal, generic (i.e. with nontrivial Whittaker coefficient) representation of GA × GLm(A). G is a split classical group and A is the adele ring of a number field F . We also consider Sp2n(A) × GLm(A), where ∼ denotes the metaplectic cover. Examining LS(σ ⊗ τ,s) through the corresponding Rankin-Selberg, or Shimura-typef integrals ([G-PS-R], [G-R-S3], [G], [So]), we find that the global integral contains, in its integrand, a certain normalized Eisenstein series which is responsible for the poles. For example, if G = SO2k+1, then the Eisenstein series is on the adele points of split SO2m, induced from the Siegel parabolic s−1/2 subgroup and τ ⊗ | det ·| . If G = Sp2k (this is a convenient abuse of notation), then the Eisenstein series is on Sp2m(A), induced from the Siegel parabolic subgroup and τ ⊗ | det ·|s−1/2. Thef constant term (along the “Siegel radical”) of such a normalized Eisenstein series involves one of the L-functions LS(τ, Λ2, 2s − 1) or LS(τ, Sym2, 2s − 1). So, up to problems of normalization of intertwining operators, the only pole we expect, for Re(s) > 1/2, is at s = 1 and then τ should be self-dual. (See [J-S1], [B-G].) Thus, let us assume that τ is self-dual. -
Scientific Report for 2012
Scientific Report for 2012 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - University of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Joachim Schwermer, Jakob Yngvason. Supported by the Austrian Federal Ministry of Science and Research (BMWF) via the University of Vienna. Contents Preface 3 The Institute and its Mission . 3 Scientific activities in 2012 . 4 The ESI in 2012 . 7 Scientific Reports 9 Main Research Programmes . 9 Automorphic Forms: Arithmetic and Geometry . 9 K-theory and Quantum Fields . 14 The Interaction of Geometry and Representation Theory. Exploring new frontiers. 18 Modern Methods of Time-Frequency Analysis II . 22 Workshops Organized Outside the Main Programmes . 32 Operator Related Function Theory . 32 Higher Spin Gravity . 34 Computational Inverse Problems . 35 Periodic Orbits in Dynamical Systems . 37 EMS-IAMP Summer School on Quantum Chaos . 39 Golod-Shafarevich Groups and Algebras, and the Rank Gradient . 41 Recent Developments in the Mathematical Analysis of Large Systems . 44 9th Vienna Central European Seminar on Particle Physics and Quantum Field Theory: Dark Matter, Dark Energy, Black Holes and Quantum Aspects of the Universe . 46 Dynamics of General Relativity: Black Holes and Asymptotics . 47 Research in Teams . 49 Bruno Nachtergaele et al: Disordered Oscillator Systems . 49 Alexander Fel'shtyn et al: Twisted Conjugacy Classes in Discrete Groups . 50 Erez Lapid et al: Whittaker Periods of Automorphic Forms . 53 Dale Cutkosky et al: Resolution of Surface Singularities in Positive Characteristic . 55 Senior Research Fellows Programme . 57 James Cogdell: L-functions and Functoriality . 57 Detlev Buchholz: Fundamentals and Highlights of Algebraic Quantum Field Theory . -
On a Correspondence Between Cuspidal
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 12, Number 3, Pages 849{907 S 0894-0347(99)00300-8 Article electronically published on April 26, 1999 ON A CORRESPONDENCE BETWEEN CUSPIDAL REPRESENTATIONS OF GL2n AND Sp2n f DAVID GINZBURG, STEPHEN RALLIS, AND DAVID SOUDRY Introduction Let K be a number field and A its ring of adeles. Let η be an irreducible, automorphic, cuspidal representation of GLm(A). Assume that η is self-dual. By Langlands conjectures, we expect that η is the functorial lift of an irreducible, automorphic, cuspidal representation σ of G(A), where G is an appropriate classical group defined over K. We know by [J.S.1] that the partial (as well as the complete) L-function LS(η η, s) has a (simple) pole at s = 1. Thus, since LS(η η, s)= LS(η, Sym2,s)LS⊗(η, Λ2,s), either LS(η, Λ2,s)orLS(η, Sym2,s) has a pole⊗ at s =1. If m =2n, then one expects that in the first case G =SO2n+1, and in the second S 2 case G =SO2n.Ifm=2n+ 1, we know that L (η, Λ ,s)isentire(see[J.S.2]), S 2 and hence L (η, Sym ,s) has a pole at s = 1. Here, one expects that G =Sp2n. In [G.R.S.1], we started a program to prove the existence of σ as above. See also [G.R.S.2], [G.R.S.3]. We proposed to prove this existence by explicit construc- tion. We constructed a space Vσ(η) of automorphic forms on G(A), invariant under right translations. -
Pdf/P-Adic-Book.Pdf
BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 4, October 2013, Pages 645–654 S 0273-0979(2013)01399-5 Article electronically published on January 17, 2013 Automorphic representations and L-functions for the general linear group. Volume I, by Dorian Goldfeld and Joseph Hundley, with exercises and a preface by Xan- der Faber, Cambridge Studies in Advanced Mathematics, Vol. 129, Cambridge University Press, Cambridge, 2011, xx+550 pp., ISBN 978-0-521-47423-8, US $105.00 Automorphic representations and L-functions for the general linear group. Volume II, by Dorian Goldfeld and Joseph Hundley, with exercises and a preface by Xan- der Faber, Cambridge Studies in Advanced Mathematics, Vol. 130, Cambridge University Press, Cambridge, 2011, xx+188 pp., ISBN 978-1-107-00794-4, US $82.00 1. Introduction One of the signs of the maturity of a subject, and oftentimes one of the causes of it, is the appearance of technical textbooks that are accessible to strong first- year graduate students. Such textbooks would have to make a careful selection of topics that are scattered in papers and research monographs and present them in a coherent fashion, occasionally replacing the natural historical order of the development of the subject by another order that is pedagogically sensible; this textbook would also have to unify the varying notations and definitions of various sources. For a field, like the theory of automorphic forms and representations, which despite its long history, is still in many ways in its infancy, writing a textbook that satisfies the demands listed above is a daunting task, and if done successfully its completion is a real achievement that will affect the development of the subject in the coming years and decades. -
ON the DEGREE FIVE L-FUNCTION for Gsp(4) 3
ON THE DEGREE FIVE L-FUNCTION FOR GSp(4) DANIEL FILE Abstract. I give a new integral representation for the degree five (standard) L-function for automorphic representations of GSp(4) that is a refinement of integral representation of Piatetski-Shapiro and Rallis. The new integral representation unfolds to produce the Bessel model for GSp(4) which is a unique model. The local unramified calculation uses an explicit formula for the Bessel model and differs completely from Piatetski-Shapiro and Rallis. 1. Introduction In 1978 Andrianov and Kalinin established an integral representation for the degree 2n + 1 standard L-function of a Siegel modular form of genus n [1]. Their integral involves a theta function and a Siegel Eisenstein series. The integral repre- sentation allowed them to prove the meromorphic continuation of the L-function, and in the case when the Siegel modular form has level 1 they established a func- tional equation and determined the locations of possible poles. Piatetski-Shapiro and Rallis became interested in the construction of Andrianov and Kalinin because it seems to produce Euler products without using any unique- ness property. Previous examples of integral representations used either a unique model such as the Whittaker model, or the uniqueness of the invariant bilinear form between an irreducible representation and its contragradient. It is known that an automorphic representation of Sp4 (or GSp4) associated to a Siegel modular form does not have a Whittaker model. Piatetski-Shapiro and Rallis adapted the integral representation of Andrianov and Kalinin to the setting of automorphic represen- tations and were able to obtain Euler products [23]; however, the factorization is not the result of a unique model that would explain the local-global structure of Andrianov and Kalinin. -
On $(\Chi, B) $-Factors of Cuspidal Automorphic Representations Of
ON (χ, b)-FACTORS OF CUSPIDAL AUTOMORPHIC REPRESENTATIONS OF UNITARY GROUPS I DIHUA JIANG AND CHENYAN WU Dedicated to Wen-Ching Winnie Li Abstract. Following the idea of [GJS09] for orthogonal groups, we introduce a new family of period integrals for cuspidal auto- morphic representations σ of unitary groups and investigate their relation with the occurrence of a simple global Arthur parameter (χ,b) in the global Arthur parameter ψσ associated to σ, by the endoscopic classification of Arthur ([Art13], [Mok13], [KMSW14]). The argument uses the theory of theta correspondence. This can be viewed as a part of the (χ,b)-theory outlined in [Jia14] and can be regarded as a refinement of the theory of theta correspondences and poles of certain L-functions, which was outlined in [Ral91]. 1. Introduction Let F be a number field and E be a quadratic extension of F . We denote by A = AF the ring of adeles of F , and by AE that of E. Let G be a unitary group associated to an m-dimensional skew-Hermitian vector space X. Consider σ in Acusp(G), the set of equivalence classes of irreducible cuspidal automorphic representations of G that occurs in the discrete spectrum, following the notation of [Art13]. Let χ be an automorphic character of GL1(AE). The tensor product L-functions L(s, σ × χ) has been investigated through the work of Li in [Li92b] arXiv:1409.0767v3 [math.NT] 1 Dec 2014 by using the doubling method of Piatetski-Shapiro and Rallis, and the work of Langlands by calculating constant terms of the Eisenstein series with cuspidal support χ ⊗ σ ([Lan71] and [Sha10]). -
The Computation of Local Exterior Square L-Functions for Glm Via Bernstein-Zelevinsky Derivatives
The Computation of Local Exterior Square L-functions for GLm via Bernstein-Zelevinsky Derivatives Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yeongseong Jo, B.S., M.S. Graduate Program in Mathematics The Ohio State University 2018 Dissertation Committee: James Cogdell, Advisor Roman Holowinsky Wenzhi Luo Cynthia Clopper c Copyright by Yeongseong Jo 2018 Abstract Let π be an irreducible admissible representation of GLm(F ), where F is a non- archimedean local field of characteristic zero. We follow the method developed by Cogdell and Piatetski-Shapiro to complete the computation of the local exterior square L-function L(s; π; ^2) in terms of L-functions of supercuspidal representa- tions via an integral representation established by Jacquet and Shalika in 1990. We analyze the local exterior square L-functions via exceptional poles and Bernstein and Zelevinsky derivatives. With this result, we show the equality of the local analytic L-functions L(s; π; ^2) via integral integral representations for the irreducible admis- 2 sible representation π for GLm(F ) and the local arithmetic L-functions L(s; ^ (φ(π))) of its Langlands parameter φ(π) via local Langlands correspondence. ii This is dedicated to my parents and especially my lovely sister who will beat cancer. iii Acknowledgments First and foremost, I would like to express my sincere gratitude to my advisor, Professor Cogdell, for his encouragement, invaluable comments, countless hours of discussions, and guidances at every stage of a graduate students far beyond this dissertation. -
Dffl `O˘U˚T¨L´Oˆo˝Kffl
L`a‹n`g¨l´a‹n`d¯s P˚r`oˆgˇr`a‹m‹m`e: ˚r`e›v˘i`e›w `a‹n`dffl `o˘u˚t¨l´oˆo˝kffl W`e›nffl-W`eˇiffl L˚iffl C‚h˚i‹n`e˙sfi`e A`c´a`d`e›m‹y `o˝f S`cˇi`e›n`c´e˙s Abstract These are notes for a talk at the Taida Institute of Mathematical Sciences (TIMS) on February 13, 2015 at Taipei. I try to give a quick, personal and biased survey of some aspects of Langlands program. Details are intentionally omitted. Nowadays the Langlands program is widely known among mathematicians. However, this huge theory is undergoing a substantial evolution that is largely unknown to outsiders. In this short note, we shall give a quick sketch thereof, although often inaccurate (with apologies), and give pointers to the literature. For various reasons, we will not touch on the motivic aspect, the function eld case or the geometric Langlands despite their importance. The reader is assumed to have some acquaintance of representations and automorphic forms. For more systematic overviews on Langlands program, we recommend [26, 25, 17], just to mention a few. 1 Recollections Generalities Consider a topological space X equipped with a Radon measure. The central issue in harmonic analysis is to decompose the space L2 (X ) under a certain group action. Examples: • X = Rn, which boils down to the L2-theory of Fourier analysis on euclidean spaces; • X = (R=Z)n: Fourier analysis on tori — equally familiar; • X = ΓnG where G is a real Lie group and Γ is a discrete subgroup thereof: this leads to the classical formulation of automorphic forms; • (The group case) X = G(F ) where F is a local eld (eg. -
On the Genericity of Cuspidal Automorphic Forms of So2n+1
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria On the Genericity of Cuspidal Automorphic Forms of SO2n+1 Dihua Jiang David Soudry Vienna, Preprint ESI 1857 (2006) October 18, 2006 Supported by the Austrian Federal Ministry of Education, Science and Culture Available via http://www.esi.ac.at On the Genericity of Cuspidal Automorphic Forms of SO2n+1 Dihua Jiang School of Mathematics University of Minnesota Minneapolis, MN55455, USA David Soudry School of Mathematical Sciences Tel Aviv University Tel Aviv, 69978 Israel October 29, 2006 Abstract We study the irreducible generic cuspidal support up to near equiv- alence for certain cuspidal automorphic forms of SO2n+1 (Theorem 3.2 and Theorem 4.1), by establishing refined arguments in the theory of local and global Howe duality and theta correspondences ([JngS03], [F95]) and in the theory of Langlands functoriality ([CKPSS01], [JngS03], [GRS01]). The results support a global analogy and generalization of a conjecture of Shahidi on the genericity of tempered local L-packets (Conjecture 1.1). The methods are expected to work for other classical groups. Mathematics Subject Classification (1991): 22E, 11F 1 1 Introduction An automorphic form is called generic if it has a nonzero Whittaker-Fourier coefficient. A precise definition will be given in 2. Generic automorphic forms have played distinguished roles in the modern§ theory of automorphic forms and L-functions. On one hand, it seems that generic automorphic forms are more accessible to analytic methods. On the other hand, it seems that non-generic automorphic forms are more sensitive to problems aris- ing from arithmetic and number theory. -
Arxiv:1603.05475V1 [Math.NT]
ON THE ANALYTIC PROPERTIES OF INTERTWINING OPERATORS I: GLOBAL NORMALIZING FACTORS TOBIAS FINIS AND EREZ LAPID To Freydoon Shahidi, for his upcoming 70th birthday Abstract. We provide a uniform estimate for the L1-norm (over any interval of bounded length) of the logarithmic derivatives of global normalizing factors associated to intertwin- ing operators for the following reductive groups over number fields: inner forms of GL(n); quasi-split classical groups and their similitude groups; the exceptional group G2. This estimate is a key ingredient in the analysis of the spectral side of Arthur’s trace formula. In particular, it is applicable to the limit multiplicity problem studied by the authors in earlier papers. Contents 1. Introduction 1 2. Estimates for logarithmic derivatives of L-functions 3 3. Global normalizing factors and L-functions 18 4. Inner forms of GL(n) 24 5. Classical groups 27 6. The exceptional group G2 34 References 35 1. Introduction In this paper we study the analytic properties of the global intertwining operators asso- ciated to parabolic subgroups of reductive groups G over number fields F . In the previous arXiv:1603.05475v1 [math.NT] 17 Mar 2016 papers [FLM15] (joint with Werner M¨uller) and [FL15], we defined certain properties (TWN) and (BD) pertaining to these intertwining operators, and showed that these two properties together imply the solution of the limit multiplicity problem for congruence sub- groups of lattices contained in G(F ). Property (TWN) is a global property concerning the scalar-valued normalizing factors, while (BD) is essentially a local property. In [FLM15], these properties were verified for the groups GL(n) and SL(n). -
Advanced Lectures in Mathematics (ALM)
Advanced Lectures in Mathematics (ALM) ALM 1: Superstring Theory ALM 2: Asymptotic Theory in Probability and Statistics with Applications ALM 3: Computational Conformal Geometry ALM 4: Variational Principles for Discrete Surfaces ALM 6: Geometry, Analysis and Topology of Discrete Groups ALM 7: Handbook of Geometric Analysis, No. 1 ALM 8: Recent Developments in Algebra and Related Areas ALM 9: Automorphic Forms and the Langlands Program ALM 10: Trends in Partial Differential Equations ALM 11: Recent Advances in Geometric Analysis ALM 12: Cohomology of Groups and Algebraic K-theory ALM 13: Handbook of Geometric Analysis, No. 2 ALM 14: Handbook of Geometric Analysis, No. 3 ALM 15: An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices ALM 16: Transformation Groups and Moduli Spaces of Curves ALM 17: Geometry and Analysis, No. 1 ALM 18: Geometry and Analysis, No. 2 ALM 19: Arithmetic Geometry and Automorphic Forms ALM 20: Surveys in Geometric Analysis and Relativity Advanced Lectures in Mathematics Volume XIX Arithmetic Geometry and Automorphic Forms edited by James Cogdell · Jens Funke · Michael Rapoport · Tonghai Yang International Press 浧䷘㟨十⒉䓗䯍 www.intlpress.com HIGHER EDUCATION PRESS Advanced Lectures in Mathematics, Volume XIX Arithmetic Geometry and Automorphic Forms Volume Editors: James Cogdell, Ohio State University at Columbus Jens Funke, Durham University Michael Rapoport, Universität Bonn Tonghai Yang, University of Wisconsin at Madison 2010 Mathematics Subject Classification. 11G18, 11G40, 11G50, 14C15, 14C17, 14C25. Copyright © 2011 by International Press, Somerville, Massachusetts, U.S.A., and by Higher Education Press, Beijing, China. This work is published and sold in China exclusively by Higher Education Press of China. -
Constructions of Automorphic Forms
Constructions of Automorphic Forms Dihua Jiang University of Minnesota December, 2011 Dihua Jiang University of Minnesota Constructions of Automorphic Forms I It is always easy to construct Eisenstein series, but it is not that easy to construct cusp forms. I For a group G, which is not GL2, it is a big problem to construct Maass cusp forms. I In this talk, we discuss recent progress on how to construct cuspidal automorphic representations of classical groups by means of residues of Eisenstein series and the relations with Langlands functoriality and the theory of endoscopy. Introduction I In the theory of classical modular forms, there are cusp forms and Eisenstein series. Dihua Jiang University of Minnesota Constructions of Automorphic Forms I For a group G, which is not GL2, it is a big problem to construct Maass cusp forms. I In this talk, we discuss recent progress on how to construct cuspidal automorphic representations of classical groups by means of residues of Eisenstein series and the relations with Langlands functoriality and the theory of endoscopy. Introduction I In the theory of classical modular forms, there are cusp forms and Eisenstein series. I It is always easy to construct Eisenstein series, but it is not that easy to construct cusp forms. Dihua Jiang University of Minnesota Constructions of Automorphic Forms I In this talk, we discuss recent progress on how to construct cuspidal automorphic representations of classical groups by means of residues of Eisenstein series and the relations with Langlands functoriality and the theory of endoscopy. Introduction I In the theory of classical modular forms, there are cusp forms and Eisenstein series.