Robotics and Remote Systems Topics 837 Performing Neutron Imaging of Mock Uranium Fuel Rods with a Robotic Manipulator Joseph Hashem University of Texas at Austin, 1 University Place R9925, Austin, TX 78752 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
[email protected] for advanced non-destructive imaging abilities and INTRODUCTION applications. Robotic systems have been used and theorized for a This paper describes an effort under way at the wide variety of imaging purposes, from medical imaging University of Texas at Austin (U.T. Austin) with to tomography using dual-arm robotic systems [2]. In collaboration from Los Alamos National Laboratory depth repeatability tests have been performed on the (LANL) to implement a robotic manipulator as the motion Motoman SIA5 robot in [3] and demonstrate that the control system for neutron imaging tasks. This effort robot’s repeatability is sufficient for these types of includes taking robotic technologies and using them to imaging tasks. automate non-destructive imaging tasks in nuclear facilities. To illustrate the advantages of using a robotic DESCRIPTION OF THE ACTUAL WORK manipulator with neutron imaging, mock-up depleted uranium fuel rods, each consisting of five pellets prepared Imaging Source and System from urania (UO2) powder, were characterized by thermal neutron radiography. The neutron imaging was performed in beam port 3 To simulate cracks and voids resulting from at U.T. Austin’s TRIGA Mark II research reactor. In this irradiation and burn-up in a fuel pin, tungsten and beam port, there is a thermal neutron flux of 5.3x106 gadolinium inclusions were embedded in the mock-up n/cm2/s and thermal-to-epithermal ratio of 8.1x104 ± 10% pellets.