Glaciers and the Changing Earth System: a 2004 Snapshot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: a Review ⇑ Chunqiao Song A, Bo Huang A,B, , Linghong Ke C, Keith S
ISPRS Journal of Photogrammetry and Remote Sensing 92 (2014) 26–37 Contents lists available at ScienceDirect ISPRS Journal of Photogrammetry and Remote Sensing journal homepage: www.elsevier.com/locate/isprsjprs Review Article Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review ⇑ Chunqiao Song a, Bo Huang a,b, , Linghong Ke c, Keith S. Richards d a Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong b Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong c Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong d Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom article info abstract Article history: Alpine lakes on the Tibetan Plateau (TP) are key indicators of climate change and climate variability. The Received 16 September 2013 increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad Received in revised form 26 February 2014 coverage and low costs allows for effective monitoring lake changes on the TP and surroundings and Accepted 3 March 2014 understanding climate change impacts, particularly in remote and inaccessible areas where there are lack Available online 26 March 2014 of in situ observations. This paper firstly introduces characteristics of Tibetan lakes, and outlines available satellite observation platforms and different remote sensing water-body extraction algorithms. Then, this Keyword: paper reviews advances in applying remote sensing methods for various lake environment monitoring, Tibetan Plateau including lake surface extent and water level, glacial lake and potential outburst floods, lake ice phenol- Lake Remote sensing ogy, geological or geomorphologic evidences of lake basins, with a focus on the trends and magnitudes of Glacial lake lake area and water-level change and their spatially and temporally heterogeneous patterns. -
Prevention of Outburst Floods from Periglacial Lakes at Grubengletscher, Valais, Swiss Alps
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2001 Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps Haeberli, Wilfried ; Kääb, Andreas ; Vonder Mühll, Daniel ; Teysseire, Philip Abstract: Flood and debris-flow hazards at Grubengletscher near Saas Balen in the Saas Valley, Valais, Swiss Alps, result from the formation and growth of several lakes at the glacier margin and within the surrounding permafrost. In order to prevent damage related to such hazards, systematic investigations were carried out and practical measures taken. The evolution of the polythermal glacier, the creeping permafrost within the large adjacent rock glacier and the development of the various periglacial lakes were monitored and documented for the last 25 years by photogrammetric analysis of annually flown high-resolution aerial photographs. Seismic refraction, d.c. resistivity and gravimetry soundings were performed together with hydrological tracer experiments to determine the structure and stability of a moraine dam at a proglacial lake. The results indicate a maximum moraine thickness of > 100 m; extremely high porosity and even ground caverns near the surface may have resulted from degradation of sub- and periglacial permafrost following 19th/20thcentury retreat of the partially cold glacier tongue. The safety and retention capacity of the proglacial lake were enhanced by deepening and reinforcing the outlet structure on top of the moraine complex. The water level of an ice-dammed lake was lowered and a thermokarst lake artficially drained. DOI: https://doi.org/10.3189/172756501781832575 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-63516 Journal Article Originally published at: Haeberli, Wilfried; Kääb, Andreas; Vonder Mühll, Daniel; Teysseire, Philip (2001). -
Mapping Glacial Lake Outburst Flood Landforms for Enhanced
GEOGRAZ 68 - 2021 SCHWERPUNKT ADAM EMMER ON THE AUTHOR Adam Emmer is physical geographer Mapping glacial lake and member of the re- search group Cascade with specialization in outburst flood landforms high mountain geomor- phology and natural hazard science. In his for enhanced understanding research, he focuses on hazardous conse- of their occurrence quences of retrea Sudden release of water retained in a glacial lake can produce a glacial lake outburst flood (GLOF), which is among the most effective geomorphic agents in mountain regions during the time of glacier ice loss. Extreme GLOFs imprint in relief with specific landforms (e.g. failed moraine dams, outwash fans) which can be used to document their occurrence in space and time. This contribution introduces typical landforms associated with GLOFs and outlines their utilization ting in reconstructing timing and magnitude for enhanced hazard identification and glaciers, mainly lake outburst floods. assessment. 1 Introduction: GLOFs in a range of triggers including landslide into areas as well as agricultural land (Haeber- changing world the lake, extreme precipitation and snow- li et al. 2016). Concerns about increasing melt or earthquake (Clague and O’Con- risk of GLOFs are driven by two factors: (i) Glacial lakes are typical features of re- nor 2015). GLOFs are rare, low frequency, increasing population pressure and settle- cently deglaciated high mountain regions high magnitude events with extreme char- ment expansion in mountain regions (espe- across the world (Shugar et al. 2020). acteristics (peak discharge, flood volume), cially in South America and Central Asia); While glacial lakes contribute to human with thousands of fatalities and tremen- and (ii) increasing number of glacial lakes well-being by providing goods and ser- dous material damages claimed globally and volume of stored water. -
The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia
Aberystwyth University The 2015 Chileno Valley glacial lake outburst flood, Patagonia Wilson, R.; Harrison, S.; Reynolds, John M.; Hubbard, Alun; Glasser, Neil; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. Published in: Geomorphology DOI: 10.1016/j.geomorph.2019.01.015 Publication date: 2019 Citation for published version (APA): Wilson, R., Harrison, S., Reynolds, J. M., Hubbard, A., Glasser, N., Wündrich, O., Iribarren Anacona, P., Mao, L., & Shannon, S. (2019). The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 332, 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Geomorphology 332 (2019) 51–65 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The 2015 Chileno Valley glacial lake outburst flood, Patagonia R. -
THE KUAN YIN HIKE 2013 Complete
THE KUAN YIN HIKE 2013 (The Kaskavagge Harmonica Hike) Before Anna and I set out on our Lapland mountain hike of 2013, I asked the oracle Kuan Yin (The Bodhisattva of Compassion; Avalokitesvara) – well known in Asia – about our conditions; first a couple of weeks before the hike, and then just ahead of our departure. These are her answers: - HEAVEN AND EARTH Heaven and Earth in complete harmony. The myriad Beings grow and thrive. Peace and satisfaction prevail for blessings and wisdom are given to all You have sown compassion and reap the harvest of joy and love. What a gift you have been given! Anything you wish to do stands under a lucky star. Grasp the opportunity with both hands, so your many ideas can be developed. You don't have to hurry, for success will come without you exhausting yourself. The soul of sweet delight can never be defiled - Kuan Yin's second answer goes: - CLIMBING THE MOUNTAIN A mountain climber works his way to the peak The sun is setting, a critical situation He prays to the heavens and finds refuge among the rocks The darkest hour before the dawn. Concentrate your insight and shelter in the rewards it brings Although things don't look too rosy at the moment, don't be worried. As soon as you can get to work, the obstacles will vanish. Think over each step carefully, and you won't go wrong. The Wise One is flexible as water and always finds the way - These were wonderful answers to receive, and how great are the chances to get such replies when you want advice on a mountain hike; Heaven and Earth and Climbing the Mountain? Some things Kuan Yin said didn't make sense until the hike developed either, but then the meaning hit like a hammer! I'll get to that when that part of the hike comes up. -
Article in Press
ARTICLE IN PRESS Quaternary Science Reviews 24 (2005) 1533–1541 Correspondence$ Fresh arguments against the Shaw megaflood hypothesis. that the Lake Agassiz flood was the ‘‘largest in the last A reply to comments by David Sharpe on ‘‘Paleohy- 100,000 years’’ refers to a different publication (Clarke draulics of the last outburst flood from glacial Lake et al., 2003). We agree that, in terms of peak discharge, Agassiz and the 8200 BP cold event’’ both the Missoula floods (e.g., Clarke et al., 1984; O’Connor and Baker, 1992) and the Altay event (Baker et al., 1993) were indeed larger (roughly 17 Sv for Missoula and 418 Sv for Altay) but the released water 1. The megaflood hypothesis volume was a small fraction of that released from glacial Lake Agassiz (Table 1). Furthermore, the focus of We disagree with the premise underlying most of Clarke et al. (2003) was on abrupt climate change David Sharpe’s comments, namely that the Shaw triggered by freshwater injection to the North Atlantic subglacial megaflood hypothesis enjoys sufficient main- Ocean at 8200 BP: Freshwater volume rather than peak streamacceptance that we were negligent in failing to flood discharge is the relevant measure of flood cite it. Although the literature on Shavian megafloods magnitude for activation of this climate switch. Sharpe’s has grown over the past decade, it is less clear that the comment that ‘‘improved knowledge of additional flood ideas have gained ground. As a recent datum, Benn and terrains is important in assessing the impact of specific Evans (2005) assert that ‘‘most Quaternary scientists outburst floods on rapid climate change’’ seems to miss give little or no credence to the [Shaw] megaflood the point that flood intensity, which controls the interpretation, and it conflicts with an overwhelming geomorphic imprint, is only a second-order influence body of modern research on past and present ice sheet on the climate impact. -
Structural Controls on Englacial Esker Sedimentation: Skeiðara´Rjo¨Kull, Iceland
Annals of Glaciology 50(51) 2009 85 Structural controls on englacial esker sedimentation: Skeiðara´rjo¨kull, Iceland Matthew J. BURKE,1 John WOODWARD,1 Andrew J. RUSSELL,2 P. Jay FLEISHER3 1School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK E-mail: [email protected] 2School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 3Earth Sciences Department, State University of New York, Oneonta, NY 13820-4015, USA ABSTRACT. We have used ground-penetrating radar (GPR) to observe englacial structural control upon the development of an esker formed during a high-magnitude outburst flood (jo¨kulhlaup). The surge- type Skeiðara´rjo¨kull, an outlet glacier of the Vatnajo¨kull ice cap, Iceland, is a frequent source of jo¨kulhlaups. The rising-stage waters of the November 1996 jo¨kulhlaup travelled through a dense network of interconnected fractures that perforated the margin of the glacier. Subsequent discharge focused upon a small number of conduit outlets. Recent ice-marginal retreat has exposed a large englacial esker associated with one of these outlets. We investigated structural controls on esker genesis in April 2006, by collecting >2.5 km of GPR profiles on the glacier surface up-glacier of where the esker ridge has been exposed by meltout. In lines closest to the exposed esker ridge, we interpret areas of englacial horizons up to 30 m wide and 10–15 m high as an up-glacier continuation of the esker sediments. High-amplitude, dipping horizons define the -
1 Overview of Megaflooding: Earth and Mars
Cambridge University Press 978-0-521-86852-5 - Megaflooding on Earth and Mars Edited by Devon M. Burr, Paul A. Carling and Victor R. Baker Excerpt More information 1 Overview of megaflooding: Earth and Mars VICTOR R. BAKER Summary of the Channeled Scabland in the northwestern United After centuries of geological controversy it is now States (Baker, 1978, 1981). Extending from the 1920s to well established that the last major deglaciation of planet the 1970s, the great ‘scablands debate’ eventually led to a Earth involved huge fluxes of water from the wasting conti- general acceptance of the cataclysmic flood origin for the nental ice sheets, and that much of this water was delivered region that had been championed by J Harlen Bretz, a pro- as floods of immense magnitude and relatively short dura- fessor at The University of Chicago. The second important tion. These late Quaternary megafloods, and the megafloods development was the discovery in the early 1970s of ancient of earlier glaciations, had short-term peak flows, compara- cataclysmic flood channels on the planet Mars (e.g. Baker ble in discharge to the more prolonged fluxes of ocean and Milton, 1974; Baker, 1982). The Martian outflow chan- currents. (The discharges for both ocean currents and nels were produced by the largest known flood discharges, megafloods generally exceed one million cubic metres per and their effects have been preserved for billions of years second, hence the prefix ‘mega’.) Some outburst floods (Baker, 2001). likely induced very rapid, short-term effects on Quater- Relatively recently it has come to be realised that nary climates. -
Pleistocene Lake Outburst Floods and Fan Formation Along the Eastern
ARTICLE IN PRESS Quaternary Science Reviews 25 (2006) 2729–2748 Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records Douglas I. Benna,b,Ã, Lewis A. Owenc, Robert C. Finkeld, Samuel Clemmense aSchool of Geography and Geosciences, University of St. Andrews, St. Andrews KY16 9AL, UK bDepartment of Geology, UNIS, PO Box 156, N-9171 Longyearbyen, Norway cDepartment of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA dCenter for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA eInstitute of Geography and Earth Sciences, University of Wales, Aberystwyth SY23 3DB, UK Received 10 June 2005; accepted 5 February 2006 Abstract Variations in the rock flour fraction in intermontane lacustrine sediments have the potential to provide more complete records of glacier fluctuations than moraine sequences, which are subject to erosional censoring. Construction of glacial chronologies from such records relies on the assumption that rock flour concentration is a simple function of glacier extent. However, other factors may influence the delivery of glacigenic sediments to intermontane lakes, including paraglacial adjustment of slope and fluvial systems to deglaciation, variations in precipitation and snowmelt, and lake outburst floods. We have investigated the processes and chronology of sediment transport on the Tuttle and Lone Pine alluvial fans in the eastern Sierra Nevada, California, USA, to elucidate the links between former glacier systems located upstream and the long sedimentary record from Owens Lake located downstream. Aggradation of both fans reflects sedimentation by three contrasting process regimes: (1) high magnitude, catastrophic floods, (2) fluvial or glacifluvial river systems, and (3) debris flows and other slope processes. -
Poster C11E-0718
C11E-0718: What controlled the distribution of Laurentide eskers? Tracy A. Brennand1, Darren B. Sjogren2, and Matthew J. Burke1 1Department of Geography, Simon Fraser University; 2Department of Geography, University of Calgary; Corresponding author: [email protected]. 929 The Problem C) Numerical ice sheet models have been used to explain landform patterns [1] and landform patterns have been used to 919 test numerical ice sheet models [2]. Neither approach is robust unless underlying assumptions are consistent with the landform record. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last 0 macroform Laurentide Ice Sheet (LIS). Most Laurentide eskers formed in subglacial to low englacial ice tunnels [3], a condition -scale 1 Ridge that likely favoured their preservation. However, there is considerable debate over a) whether they formed gradually 0 150 from astronomically-forced meltwater flows [1, 2] or rapidly from glacial lake or surge-related outburst floods [4, 5], b) 20 100 whether they formed in segments time-transgressively [1, 2] or synchronously along their length [3, 4, 5], and c) 929 whether their distribution is mainly controlled by bed deformability [6], bed permeability and groundwater flow [2, 7], 50 sediment supply [8] or climate/water supply [3]. It is imperative that these debates be resolved so that the underlying 919 40 0 9 Direction assumptions of numerical models are robust. Here we approach the problem from first principles, asking first what 29 Flow 50 B) ) basic conditions are required for esker formation and what controls these conditions, then assessing the evidence for l s 9 each of these controls 1) at the scale of the LIS and 2) in southern Alberta where eskers are relatively small. -
University Microfilms, a XEROX Company, Ann Arbor, Michigan
I I 72-4508 GUNNER, John Duncan, 1945- AGE AND ORIGIN OF THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA. The Ohio State University, Ph.D., 1971 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED AGE AND ORIGIN OP THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Duncan Gunner, 3.A., M.A ****** The Ohio State University 1971 Approved by Adviser Department of Geology PLEASE NOTE: Some Pages have indistinct p rin t. Filmed as received. UNIVERSITY MICROFILMS igure 1: View across the Beardmore Glacier from the Summit of Mount Kyffin. The Rocks in the Foreground are Argillites and Arenites of the 'Goldie Formation, and the Sharp Peak is formed of Hope Granite. The Rounded Mountain on the Left Horizon is The Cloudmaker. ACKNOWLEDGMENTS I am greatly indebted to Dr. Gunter Faure for his enthusiastic ad vice and encouragement throughout this study. I am grateful also to the members of the Institute of Polar Studies expeditions to the Beardmore Glacier region during the 1967-1968 and 1969-1970 field seasons, and especially to David Johnston and to Drs. I. C. Rust and D. H. Elliot for willing assistance and stimulating dis cussions in the field. Logistic field support was provided by Squadron VXE-6 of the U. S. Naval Support Force, Antarctica, without whose help this study would not have been possible. -
Mm^Umamm a N E W S B U L L E T I N
mm^umamm A N E W S B U L L E T I N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY ■ H.M.N.Z.S. ENDEAVOUR about to tie up in Winter Quarters Bay. On right, Vince's Cross and Scott's hut. J. Calvert photo. MARCH, 1965 AUSTRALIA Winter and Summer bases Scott- S u m m e r b a s e o n l y t H a l l e f t "cton NEW ZEALAND Transferred base Wilkes UStcAust Temporarily non -operational. .KSyowa TASMANIA , Campbell I. (N-l) , ^ V - r . ^ ^ N . AT // \$ 5«|* Pasar'C ^rd(i/.sA . *"Vp»tuk , N |(I/.«.AJ i - S c o t t ( U . 5 J i t - A N T A R. M^ciJ ^>cwj a fi/V wX " < S M a u d **$P -Marion I. ttM DRAWN BY DEPARTMENT OF LANDS 1 SURVEY WELLINGTON, NEW ZEALAND, MAR.I9l»4- 1 " . " E D I T I O N m ilHl^IBS^IKB^k (Successor to "Antarctic News Bulletin") MARCH, 1965 Editor: L. B. Quartermain, M.A., 1 Ariki Road, Wellington, E.2, New Zealand. Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society, P.O. Box 2110, Wellington, N.Z. CONTENTS EXPEDITIONS New Zealand The Central Nimrod Glacier Geological Expedition: M. G. Laird Victoria University Research in Ice-free Areas: W. M. Prebble The D-region Project: J. B. Gregory France United States First Leg of Traverse Australia Belgium-Holland U.S.S.R South Africa Argentina United Kingdom Chile Japan Sub-Antarctic Islands British South Georgia Expedition Big Ben Conquered Special Articles: Hallett Closed Antarctic Stations—I.