Investigation of Antiviral State Mediated by Interferon-Inducible
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antiviral Agents Active Against Influenza a Viruses
REVIEWS Antiviral agents active against influenza A viruses Erik De Clercq Abstract | The recent outbreaks of avian influenza A (H5N1) virus, its expanding geographic distribution and its ability to transfer to humans and cause severe infection have raised serious concerns about the measures available to control an avian or human pandemic of influenza A. In anticipation of such a pandemic, several preventive and therapeutic strategies have been proposed, including the stockpiling of antiviral drugs, in particular the neuraminidase inhibitors oseltamivir (Tamiflu; Roche) and zanamivir (Relenza; GlaxoSmithKline). This article reviews agents that have been shown to have activity against influenza A viruses and discusses their therapeutic potential, and also describes emerging strategies for targeting these viruses. HXNY In the face of the persistent threat of human influenza A into the interior of the virus particles (virions) within In the naming system for (H3N2, H1N1) and B infections, the outbreaks of avian endosomes, a process that is needed for the uncoating virus strains, H refers to influenza (H5N1) in Southeast Asia, and the potential of to occur. The H+ ions are imported through the M2 haemagglutinin and N a new human or avian influenza A variant to unleash a (matrix 2) channels10; the transmembrane domain of to neuraminidase. pandemic, there is much concern about the shortage in the M2 protein, with the amino-acid residues facing both the number and supply of effective anti-influenza- the ion-conducting pore, is shown in FIG. 3a (REF. 11). virus agents1–4. There are, in principle, two mechanisms Amantadine has been postulated to block the interior by which pandemic influenza could originate: first, by channel within the tetrameric M2 helix bundle12. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Opposing Activities of IFITM Proteins in SARS-Cov-2 Infection
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246678; this version posted August 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Opposing activities of IFITM proteins in SARS-CoV-2 infection Guoli Shi1*, Adam D. Kenney2,3*, Elena Kudryashova3,4, Lizhi Zhang2,3, Luanne Hall-Stoodley2, Richard T. Robinson2, Dmitri S. Kudryashov3,4, Alex A. Compton1,#, and Jacob S. Yount2,3,# 1HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA. 2Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA 3Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA 4Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA *These authors contributed equally to this work #Address correspondence to Alex A. Compton, [email protected], and Jacob S. Yount, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246678; this version posted August 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. Here we show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS- CoV-2 infections are generally restricted by expression of human IFITM1, IFITM2, and IFITM3, using both gain- and loss-of-function approaches. -
Virus-Host Interaction: the Multifaceted Roles of Ifitms And
Virus-Host Interaction: The Multifaceted Roles of IFITMs and LY6E in HIV Infection DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jingyou Yu Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2018 Dissertation Committee: Shan-Lu Liu, MD, PhD, Advisor Patrick L. Green, PhD Jianrong Li, DVM., PhD Jesse J. Kwiek, PhD Copyrighted by Jingyou Yu 2018 Abstract With over 1.8 million newly infected people each year, the worldwide HIV-1 epidemic remains an imperative challenge for public health. Recent work has demonstrated that type I interferons (IFNs) efficiently suppress HIV infection through induction of hundreds of interferon stimulated genes (ISGs). These ISGs target distinct infection stages of invading pathogens and shape innate immunity. Among these, interferon induced transmembrane proteins (IFITMs) and lymphocyte antigen 6 complex, locus E (LY6E) have been shown to differentially modulate viral infections. However, their effects on HIV are not fully understood. In my thesis work, I provided evidence in Chapter 2 showing that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env), thereby inhibiting viral infection. IFITM proteins interacted with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions did not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes led to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appeared to be virus- strain dependent. -
Summary of Neuraminidase Amino Acid Substitutions Associated with Reduced Inhibition by Neuraminidase Inhibitors
Summary of neuraminidase amino acid substitutions associated with reduced inhibition by neuraminidase inhibitors. Susceptibility assessed by NA inhibition assays Source of Type/subtype Amino acid N2 b (IC50 fold change vs wild type [NAI susceptible virus]) viruses/ References Comments substitutiona numberinga Oseltamivir Zanamivir Peramivir Laninamivir selection withc A(H1N1)pdm09 I117R 117 NI (1) RI (10) ? ?d Sur (1) E119A 119 NI/RI (8-17) RI (58-90) NI/RI (7-12) RI (82) RG (2, 3) E119D 119 RI (25-23) HRI (583-827) HRI (104-286) HRI (702) Clin/Zan; RG (3, 4) E119G 119 NI (1-7) HRI (113-1306) RI/HRI (51-167) HRI (327) RG; Clin/Zan (3, 5, 6) E119V 119 RI (60) HRI (571) RI (25) ? RG (5) Q136K/Q 136 NI (1) RI (20) ? ? Sur (1) Q136K 136 NI (1) HRI (86-749) HRI (143) RI (42-45) Sur; RG; in vitro (2, 7, 8) Q136R was host Q136R 136 NI (1) HRI (200) HRI (234) RI (33) Sur (9) cell selected D151D/E 151 NI (3) RI (19) RI (14) NI (5) Sur (9) D151N/D 151 RI (22) RI (21) NI (3) NI (3) Sur (1) R152K 152 RI(18) NI(4) NI(4) ? RG (3, 6) D199E 198 RI (16) NI (7) ? ? Sur (10) D199G 198 RI (17) NI (6) NI (2) NI (2) Sur; in vitro; RG (2, 5) I223K 222 RI (12–39) NI (5–6) NI (1–4) NI (4) Sur; RG (10-12) Clin/No; I223R 222 RI (13–45) NI/RI (8–12) NI (5) NI (2) (10, 12-15) Clin/Ose/Zan; RG I223V 222 NI (6) NI (2) NI (2) NI (1) RG (2, 5) I223T 222 NI/RI(9-15) NI(3) NI(2) NI(2) Clin/Sur (2) S247N 246 NI (4–8) NI (2–5) NI (1) ? Sur (16) S247G 246 RI (15) NI (1) NI (1) NI (1) Clin/Sur (10) S247R 246 RI (36-37) RI (51-54) RI/HRI (94-115) RI/HRI (90-122) Clin/No (1) -
Prognostic Significance of IFITM1 Expression and Correlation With
Pathology - Research and Practice 215 (2019) 152444 Contents lists available at ScienceDirect Pathology - Research and Practice journal homepage: www.elsevier.com/locate/prp Prognostic significance of IFITM1 expression and correlation with microvessel density and epithelial–mesenchymal transition signature in lung T adenocarcinoma ⁎ Young Wha Koha, , Jae-Ho Hana, Dongjun Jeongb, Chang-Jin Kimb a Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea b Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea ARTICLE INFO ABSTRACT Keywords: We evaluated the relationship between interferon-induced transmembrane protein 1 (IFITM1) expression, epi- Lung adenocarcinoma thelial–mesenchymal transition (EMT) signature and angiogenesis in lung adenocarcinoma. Additionally, we Interferon-induced transmembrane protein 1 examined prognostic significance of IFITM1 according to pTNM stage to confirm that IFITM1 can serve as a Microvessel complement to the pTNM stage. A total of 141 lung adenocarcinoma specimens were evaluated retrospectively Density by immunohistochemical staining for IFITM1, EMT markers (e-cadherin, β-catenin, and vimentin), and CD31 to Epithelial–mesenchymal transition measure microvessel density. IFITM1was expressed in 46.8% of the specimens. IFITM1 expression was sig- Prognosis nificantly correlated with increased microvessel density (P = 0.048). However, IFITM1 expression was not as- sociated with three EMT markers. In a multivariate analysis, IFITM1 was an independent prognostic factor for overall survival in a multivariate analysis (hazard ratio: 2.59, P = 0.01). Online database with data from 720 lung adenocarcinoma patients also revealed a negative prognostic significance of IFITM1 (P < 0.001). Furthermore, high IFITM1 expression was significantly correlated with decreased OS rates in each pTNM stage. -
Human Macrophage Activation Programs Induced by Bacterial Pathogens
Human macrophage activation programs induced by bacterial pathogens Gerard J. Nau*†‡, Joan F. L. Richmond*‡, Ann Schlesinger*‡, Ezra G. Jennings*§, Eric S. Lander*§, and Richard A. Young*§¶ *Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142; †Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02114; and §Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Communicated by Gerald R. Fink, Whitehead Institute for Biomedical Research, Cambridge, MA, December 5, 2001 (received for review October 2, 2001) Understanding the response of innate immune cells to pathogens bia, MD). Monocytes were cultured at a density of 2 ϫ 107 may provide insights to host defenses and the tactics used by cells͞10 ml of DMEM (Invitrogen) with 20% FCS (Intergen, pathogens to circumvent these defenses. We used DNA microar- Purchase, NY), 10% human serum (Nabi, Boca Raton, FL), and rays to explore the responses of human macrophages to a variety 50 g͞ml gentamicin (Invitrogen) in Primaria T-25 flasks (Bec- of bacteria. Macrophages responded to a broad range of bacteria ton Dickinson) for 5 days at 37°C, 5% CO2. On days 5 and 7, half with a robust, shared pattern of gene expression. The shared of the media was removed and replaced with media lacking FCS. response includes genes encoding receptors, signal transduction Media on the cultured macrophages was changed to 5 ml of molecules, and transcription factors. This shared activation pro- DMEM with 1% human serum on day 9, 1 hour before exper- gram transforms the macrophage into a cell primed to interact with iments were begun. its environment and to mount an immune response. -
A Membrane Topology Model for Human Interferon Inducible Transmembrane Protein 1
A Membrane Topology Model for Human Interferon Inducible Transmembrane Protein 1 Stuart Weston1*, Stephanie Czieso1, Ian J. White1, Sarah E. Smith2, Paul Kellam2,3, Mark Marsh1,3* 1 MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom, 2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom, 3 MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom Abstract InterFeron Inducible TransMembrane proteins 1–3 (IFITM1, IFITM2 and IFITM3) are a family of proteins capable of inhibiting the cellular entry of numerous human and animal viruses. IFITM1-3 are unique amongst the currently described viral restriction factors in their apparent ability to block viral entry. This restrictive property is dependant on the localisation of the proteins to plasma and endosomal membranes, which constitute the main portals of viral entry into cells. The topology of the IFITM proteins within cell membranes is an unresolved aspect of their biology. Here we present data from immunofluorescence microscopy, protease cleavage, biotin-labelling and immuno-electron microscopy assays, showing that human IFITM1 has a membrane topology in which the N-terminal domain resides in the cytoplasm, and the C-terminal domain is extracellular. Furthermore, we provide evidence that this topology is conserved for all of the human interferon- induced IFITM proteins. This model is consistent with that recently proposed for murine IFITM3, but differs from that proposed for murine IFITM1. Citation: Weston S, Czieso S, White IJ, Smith SE, Kellam P, et al. (2014) A Membrane Topology Model for Human Interferon Inducible Transmembrane Protein 1. -
Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP), -
HIV-1 Mutates to Evade IFITM1 Restriction
Virology 454-455 (2014) 11–24 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro HIV-1 mutates to evade IFITM1 restriction Shilei Ding a,b, Qinghua Pan a, Shan-Lu Liu d,nn, Chen Liang a,b,c,n a Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2 b Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada H3A 2B4 c Department of Medicine, McGill University, Montreal, QC, Canada H3A 2B4 d Department of Molecular Microbiology & Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA article info abstract Article history: Interferon-induced transmembrane (IFITM) proteins inhibit the infection of a wide range of viruses Received 7 November 2013 including human immunodeficiency virus type 1 (HIV-1). At present, little is known about how viruses Returned to author for revisions overcome IFITM restriction. In this study, we have utilized HIV-1 as a model and selected IFITM1- 25 November 2013 resistant viruses after multiple passages of HIV-1 in IFITM1-expressing SupT1 cells. Sequencing the entire Accepted 25 January 2014 viral genome revealed several mutations in the vpu and envelope genes, among which mutations Vpu34 Available online 20 February 2014 and EnvG367E together enable efficient HIV-1 replication in IFITM1-expressing cells. Vpu34 introduces a Key words: stop codon at amino acid position 35 of Vpu, whereas EnvG367E changes the G367 residue at the CD4- HIV-1 binding site of gp120. These two mutations do not appear to overcome the downregulation of viral p24 IFITM1 expression caused by IFITM1, but rather enhance HIV-1 replication by promoting cell-to-cell virus Cell-to-cell transmission transmission. -
Journal Pre-Proof
Journal Pre-proof Ongoing Clinical Trials for the Management of the COVID-19 Pandemic M.P. Lythgoe, P. Middleton PII: S0165-6147(20)30070-5 DOI: https://doi.org/10.1016/j.tips.2020.03.006 Reference: TIPS 1706 To appear in: Trends in Pharmacological Sciences Please cite this article as: M.P. Lythgoe and P. Middleton, Ongoing Clinical Trials for the Management of the COVID-19 Pandemic, Trends in Pharmacological Sciences (2020), https://doi.org/10.1016/j.tips.2020.03.006 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier. Journal Pre-proof Ongoing Clinical Trials for the Management of the COVID-19 Pandemic *MP Lythgoe1 & *P Middleton2 1Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK 2 Department of Metabolism, Digestion & Reproduction, Imperial College London, St Marys Hospital, Praed Street, W21NY, London UK *Equal contribution Corresponding Email: [email protected] Key words: Coronavirus, SARS-CoV-2, COVID-19, 2019-nCoV, pandemic ABSTRACT COVID-19 has rapidly developed into a worldwide pandemic causing a significant health and economic burden. -
IFITM3 Inhibits Virus-Triggered Induction of Type I Interferon by Mediating Autophagosome-Dependent Degradation of IRF3
Cellular & Molecular Immunology (2018) 15, 858–867 & 2017 CSI and USTC All rights reserved 2042-0226/17 www.nature.com/cmi RESEARCH ARTICLE IFITM3 inhibits virus-triggered induction of type I interferon by mediating autophagosome-dependent degradation of IRF3 Li-Qun Jiang1, Tian Xia1, Yun-Hong Hu1, Ming-Shun Sun1, Shuang Yan1, Cao-Qi Lei1, Hong-Bing Shu1, Ji-Hua Guo2 and Yu Liu1 Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that can be induced by viral infection and interferons (IFNs). It inhibits the entry and replication of many viruses, which are independent of receptor usage but dependent on processes that occur in endosomes. In this study, we demonstrate that IFITM3 plays important roles in regulating the RNA-virus-triggered production of IFN-β in a negative-feedback manner. Overexpression of IFITM3 inhibited Sendai virus-triggered induction of IFN-β, whereas knockdown of IFITM3 had the opposite effect. We also showed that IFITM3 was constitutively associated with IRF3 and regulated the homeostasis of IRF3 by mediating the autophagic degradation of IRF3. These findings suggest a novel inhibitory function of IFITM3 on the RNA-virus-triggered production of type I IFNs and cellular antiviral responses. Cellular & Molecular Immunology advance online publication, 24 April 2017; doi:10.1038/cmi.2017.15 Keywords: autophagy; IFITM3; IFNs; IRF3 INTRODUCTION TLRs and RIG-I-like receptors (RLRs) detect RNA virus As the first line of host defense, the innate immune system infection. For example, TLR3 recognizes viral double-stranded counters viral infection by expressing a number of intrinsic RNA (dsRNA) released by infected cells and triggers TIR- antiviral proteins, triggering the production of interferons domain- containing adapter-inducing interferon-β-mediated (IFNs) and facilitating the activation of adaptive immunity.