Usage of Antivirals and the Occurrence of Antiviral Resistance in Norway 2018

Total Page:16

File Type:pdf, Size:1020Kb

Usage of Antivirals and the Occurrence of Antiviral Resistance in Norway 2018 REPORT 2019 Usage of Antivirals and the Occurrence of Antiviral Resistance in Norway 2018 RAVN Resistensovervåking av virus i Norge Resistance against Antivirals in Norway Usage of Antivirals and the Occurrence of Antiviral resistance in Norway 2018 RAVN Resistensovervåkning av virus i Norge Resistance against antivirals in Norway 2 Published by the Norwegian Institute of Public Health Division of Infection Control and Environmental Health Department for Infectious Disease registries October 2019 Title: Usage of Antivirals and the Occurrence of Antiviral Resistance in Norway 2018. RAVN Ordering: The report can be downloaded as a pdf at www.fhi.no Graphic design cover: Fete Typer ISBN nr: 978-82-8406-032-3 Emneord (MeSH): Antiviral resistance Any usage of data from this report should include a specific reference to RAVN. Suggested citation: RAVN. Usage of Antivirals and the Occurrence of Antiviral Resistance in Norway 2018. Norwegian Institute of Public Health, Oslo 2019 Resistance against antivirals in Norway • Norwegian Institute of Public Health 3 Table of contents Introduction _________________________________________________________________________ 4 Contributors and participants __________________________________________________________ 5 Sammendrag ________________________________________________________________________ 6 Summary ___________________________________________________________________________ 8 1 Antivirals and development of drug resistance ______________________________________ 10 2 The usage of antivirals in Norway _________________________________________________ 16 Influenza virus 19 Human immunodeficiency virus 20 Hepatitis B virus 24 Human herpesviruses 25 Hepatitis C virus 26 3 Influenza virus _________________________________________________________________ 29 Surveillance methods 29 Surveillance data 2018 29 New flu antiviral drugs: potential for resistance 32 4 Human immunodeficiency virus ___________________________________________________ 37 Surveillance methods 37 Surveillance data 2018 38 National tenders on HIV drugs: Perspectives on antiretroviral drug resistance 41 5 Hepatitis B virus ________________________________________________________________ 44 Surveillance method 44 Surveillance data 2018 44 6 Human herpes viruses ___________________________________________________________ 47 Surveillance of cytomegalovirus drug resistance 47 Surveillance method 47 Surveillance data 2018 47 Surveillance of herpes simplex virus drug resistance 49 Surveillance method 49 Surveillance data 2018 49 7 Hepatitis C virus ________________________________________________________________ 50 Resistance against antivirals in Norway • Norwegian Institute of Public Health 4 Introduction In 2018, the rise in antimicrobial resistance (AMR) was defined by WHO as one of the greatest threats to global health. Antiviral treatment is a young, but rapidly growing field, and the number of antiviral drugs registered is constantly increasing. Better knowledge and increased awareness are essential to be able to control emerging antiviral drug resistance, and surveillance will be a key tool for management. The Norwegian Surveillance System for Virus Resistance (RAVN) was established in 2014 and is coordinated by the RAVN administration at the Norwegian Institute of Public Health. The RAVN administration works together with the RAVN Advisory council to monitor viral resistance in collaboration with participating regional laboratories. It is a pleasure to present the sixth report from the surveillance system for Resistance against Antivirals in Norway (RAVN). In this report, we present data for 2018 on resistance against agents for treatment of influenza, HIV-1 infection, hepatitis B virus infection. and human herpes virus infections. The reference laboratories at the Norwegian Institute of Public Health and at the Oslo University Hospital have submitted the data. In this year’s report, we have added a new chapter with a general introduction to antiviral treatment and drug resistance, including a presentation of the different drugs and drug classes. Hopefully, this will provide useful background knowledge when reading other parts of the report, particularly for new colleagues in the field. In addition to the surveillance data, we have selected two relevant topics that are given special attention in the report, presented by invited authors: • National tender on HIV drugs: This is a process administered by Norwegian health authorities aiming to reduce the cost of antiretroviral treatment of HIV through coordinated procurement of the drugs. The possible consequences of instructing clinicians to prescribe drugs based on an economically prioritized list of HIV treatment regimens are discussed from a drug resistance perspective. • New antiviral drugs against influenza: Currently, oseltamivir is the only drug on the market in Norway, but new drugs are in the pipeline. An overview of new treatment options is presented, and their potential for drug resistance discussed. Furthermore, we provide an update on the status of the ongoing work with resistance testing for hepatitis C virus (HCV): Drug resistance testing is currently not available in Norway. An assay based on next generation sequencing is being implemented at the NIPH. It is our hope that the report contains valuable data and interesting perspectives for clinicians, microbiologists, other colleagues with an interest in infectious diseases, and for those developing diagnostic- and treatment guidelines and strategies to prevent transmission of viral infections. RAVN would like to thank those who contributed with data and writing this report, for excellent work. Enjoy! Resistance against antivirals in Norway • Norwegian Institute of Public Health 5 Contributors and participants Editors: Anne-Marte Bakken Kran Norwegian Institute of Public Health (NIPH) Othilde Elise Håvelsrud Norwegian Institute of Public Health (NIPH) Collaborating authors: Irene Litleskare Usage of antivirals in Norway NIPH Karoline Bragstad Influenza virus NIPH Anne-Marte Bakken Kran Human Immunodeficiency virus NIPH, Oslo University Hospital Vidar Ormåsen Human Immunodeficiency virus Oslo University Hospital Kathrine Stene-Johansen Hepatitis B virus NIPH Grete Birkeland Kro Human herpesviruses Oslo University Hospital Kathrine Stene-Johansen Hepatitis C virus NIPH Rikard Rykkvin Hepatitis C virus NIPH Contributors: From RAVN advisory council: Garth Tylden, Andreas Christensen, Heidi Syre, Birgitta Åsjø RAVN administration https://www.fhi.no/hn/helseregistre-og-registre/ravn/ Institutions submitting surveillance data to RAVN: NIPH, Karoline Bragstad / Kathrine Stene-Johansen / Rikard Rykkvin. The Norwegian Prescription database (NorPD), NIPH, Irene Litleskare Oslo University Hospital, Rikshospitalet, Grete Birkeland Kro Oslo University Hospital, Ullevål, Anne-Marte Bakken Kran, Mona Holberg-Petersen RAVN advisory council 2018: Anne Marte Bakken Kran (chairperson) Oslo University Hospital, Ullevål, Oslo Bente Bergersen Oslo University Hospital, Ullevål, Oslo Kathrine Stene-Johansen Norwegian Institute of Public Health, Oslo Andreas Christensen St. Olav University Hospital, Trondheim Garth Tylden University Hospital of North Norway, Tromsø Heidi Syre Stavanger University Hospital Susanne Dudman Norwegian Institute of Public Health, Oslo Birgitta Åsjø Haukeland University Hospital, Bergen Resistance against antivirals in Norway • Norwegian Institute of Public Health 6 Sammendrag Bruk av antivirale midler Ifølge data fra Reseptregisteret, fortsetter trenden fra tidligere år, nemlig at salget av antivirale medikamenter målt i definerte døgndoser (DDD) fortsetter å øke også i 2018. Til tross for en økning av salget, både målt i antall DDD og i antall behandlede pasienter, er kostnadene i 2018 for første gang redusert. Dette kan forklares av prisreduksjon på medikamenter mot hiv og hepatitt C virus (HCV). For medikamenter mot hiv og HCV har det vært en dreining fra medikamenter med ett virkestoff til kombinasjonspreparater. Denne endringen har vært spesielt tydelig for HCV de siste to år, hvor 95 % av pasientene i 2018 ble behandlet med kombinasjonspreparater mot 27 % i 2016 og ingen i 2014. Influensavirus Det ble ikke påvist influensavirus med resistens mot oseltamivir eller zanamivir i 2017/18-sesongen. Alle sirkulerende influensavirusgrupper er for tiden resistente overfor adamantaner, og FHI har derfor sluttet å teste rutinemessig for adamantanresistens. Kun oseltamivir er nå tilgjengelig på det norske markedet. Humant immunsviktvirus-1 Resistensmutasjoner som overvåkes ble påvist i 9.2 % av prøvene fra pasienter med nydiagnostisert hiv-1 infeksjon i Norge i 2018. Dette er en noe høyere andel enn foregående år, men det var i 2018 også færre prøver som ble undersøkt for resistens, og totalt færre nye tilfeller av hiv-1 i Norge. Prevalensen av overført resistens har vært stabil de siste årene med bare små variasjoner. I 2018 var det utelukkende resistensmutasjoner assosiert med revers transkriptase- hemmere som ble påvist i overvåkningen av primærresistens (5.9 % non-nukleosid- og 5.0 % nukleosid revers transkriptasehemmere). Det ble ikke påvist noen mutasjoner assosiert med resistens mot proteasehemmere. For integrasehemmere er det ingen overvåkning av primærresistens. Hepatitt B virus I 2018 ble 20 pasientprøver sendt til referanselaboratoriet for hepatitt B virus (HBV) resistenstesting. Det ble påvist antiviral resistens i 4 av disse prøvene, og alle hadde mutasjoner assosiert med resistens mot entecavir.
Recommended publications
  • Daklinza, INN-Daclatasvir
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT Daklinza 30 mg film-coated tablets Daklinza 60 mg film-coated tablets Daklinza 90 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Daklinza 30 mg film-coated tablets Each film-coated tablet contains daclatasvir dihydrochloride equivalent to 30 mg daclatasvir. Daklinza 60 mg film-coated tablets Each film-coated tablet contains daclatasvir dihydrochloride equivalent to 60 mg daclatasvir. Daklinza 90 mg film-coated tablets Each film-coated tablet contains daclatasvir dihydrochloride equivalent to 90 mg daclatasvir. Excipient(s) with known effect Each 30-mg film-coated tablet contains 58 mg of lactose (as anhydrous). Each 60-mg film-coated tablet contains 116 mg of lactose (as anhydrous). Each 90-mg film-coated tablet contains 173 mg of lactose (as anhydrous). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). Daklinza 30 mg film-coated tablets Green biconvex pentagonal of dimensions 7.2 mm x 7.0 mm, debossed tablet with "BMS" on one side and "213" on the other side. Daklinza 60 mg film-coated tablets Light green biconvex pentagonal of dimensions 9.1 mm x 8.9 mm, debossed tablet with "BMS" on one side and "215" on the other side. Daklinza 90 mg film-coated tablets Light green biconvex round of dimension 10.16 mm diameter, embossed tablet with "BMS" on one side and "011" on the other side.
    [Show full text]
  • Injectable PLGA Adefovir Microspheres; the Way for Long Term Therapy of T Chronic Hepatitis-B ⁎ Margrit M
    European Journal of Pharmaceutical Sciences 118 (2018) 24–31 Contents lists available at ScienceDirect European Journal of Pharmaceutical Sciences journal homepage: www.elsevier.com/locate/ejps Injectable PLGA Adefovir microspheres; the way for long term therapy of T chronic hepatitis-B ⁎ Margrit M. Ayouba, , Neveen G. Elantounyb, Hanan M. El-Nahasa, Fakhr El-Din S. Ghazya a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt b Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt ARTICLE INFO ABSTRACT Keywords: For patient convenience, sustained release Adefovir Poly-d,l-lactic-co-glycolic acid (PLGA) microspheres were Adefovir formulated to relieve the daily use of the drug which is a problem for patients treated from chronic hepatitis-B. Biodegradable microspheres PLGA microspheres were prepared and characterized by entrapment efficiency, particle size distribution and Poly-lactic-co-glycolic acid scanning electron microscopy (SEM). In-vitro release and in-vivo studies were carried out. Factors such as drug: Entrapment efficiency polymer ratio, polymer viscosity and polymer lactide content were found to be important variables for the preparation of PLGA Adefovir microspheres. Fourier transform infrared (FTIR) analysis and differential scanning calorimetry (DSC) were performed to determine any drug-polymer interactions. One way analysis of variance (ANOVA) was employed to analyze the pharmacokinetic parameters after intramuscular injection of the pure drug and the selected PLGA microspheres into rats. FTIR and DSC revealed a significant interaction between the drug and the polymer. Reports of SEM before and after 1 and 24 h release showed that the microspheres had nonporous smooth surface even after 24 h release.
    [Show full text]
  • Highlights of Prescribing Information
    HIGHLIGHTS OF PRESCRIBING INFORMATION --------------------------WARNINGS AND PRECAUTIONS--------------------­ These highlights do not include all the information needed to use • New onset or worsening renal impairment: Can include acute VIREAD safely and effectively. See full prescribing information renal failure and Fanconi syndrome. Assess creatinine clearance for VIREAD. (CrCl) before initiating treatment with VIREAD. Monitor CrCl and ® serum phosphorus in patients at risk. Avoid administering VIREAD (tenofovir disoproxil fumarate) tablets, for oral use VIREAD with concurrent or recent use of nephrotoxic drugs. (5.3) VIREAD® (tenofovir disoproxil fumarate) powder, for oral use • Coadministration with Other Products: Do not use with other Initial U.S. Approval: 2001 tenofovir-containing products (e.g., ATRIPLA, COMPLERA, and TRUVADA). Do not administer in combination with HEPSERA. WARNING: LACTIC ACIDOSIS/SEVERE HEPATOMEGALY WITH (5.4) STEATOSIS and POST TREATMENT EXACERBATION OF HEPATITIS • HIV testing: HIV antibody testing should be offered to all HBV- infected patients before initiating therapy with VIREAD. VIREAD See full prescribing information for complete boxed warning. should only be used as part of an appropriate antiretroviral • Lactic acidosis and severe hepatomegaly with steatosis, combination regimen in HIV-infected patients with or without HBV including fatal cases, have been reported with the use of coinfection. (5.5) nucleoside analogs, including VIREAD. (5.1) • Decreases in bone mineral density (BMD): Consider assessment • Severe acute exacerbations of hepatitis have been reported of BMD in patients with a history of pathologic fracture or other in HBV-infected patients who have discontinued anti- risk factors for osteoporosis or bone loss. (5.6) hepatitis B therapy, including VIREAD. Hepatic function • Redistribution/accumulation of body fat: Observed in HIV-infected should be monitored closely in these patients.
    [Show full text]
  • Hepsera, INN- Defovir Dipivoxil
    SCIENTIFIC DISCUSSION This module reflects the initial scientific discussion for the approval of Hepsera. For information on changes after approvalplease refer to module 8B 1. Chemical, pharmaceutical and biological aspects Composition Hepsera is presented as an immediate release tablet containing 10 mg of adefovir dipivoxil, as active substance. The other ingredients in this formulation are commonly used in tablets Hepsera is supplied in high-density polyethylene bottle (HDPE), with silica gel desiccant canisters or sachets, and polyester fiber packing material. The closure system consists of a child-resistant polypropylene screw cap lined with an induction activated aluminium foil liner. Active substance Adefovir dipivoxil is an ester prodrug of the nucleotide analogue, adefovir. A structural modification of the parent drug has been carried out in order to increase the lipophilicity and to enhance the oral bioavailability of adefovir. The active substance is a white to off-white crystalline powder. It is soluble in ethanol, sparingly soluble in 0.1N HCl and very slightly soluble in water adjusted to pH 7.2 but relatively highly soluble at physiological pH. The active substance does not contain any chiral center and does not exhibit any optical isomerism. In laboratory studies the anhydrate crystal form has been observed to convert gradually into a dihydrate crystal form when adefovir dipivoxil was exposed to high humidity conditions (75% R.H., 25ºC) over an approximately one-month period. However, the only crystal form produced during the active substance synthesis and utilised in non-clinical and clinical studies has been the anhydrous crystal form. Adefovir dipivoxil undergoes also hydrolysis in aqueous solution and to a smaller degree in the solid state after exposure to humidity and heat for extended periods.
    [Show full text]
  • COVID-19) Pandemic on National Antimicrobial Consumption in Jordan
    antibiotics Article An Assessment of the Impact of Coronavirus Disease (COVID-19) Pandemic on National Antimicrobial Consumption in Jordan Sayer Al-Azzam 1, Nizar Mahmoud Mhaidat 1, Hayaa A. Banat 2, Mohammad Alfaour 2, Dana Samih Ahmad 2, Arno Muller 3, Adi Al-Nuseirat 4 , Elizabeth A. Lattyak 5, Barbara R. Conway 6,7 and Mamoon A. Aldeyab 6,* 1 Clinical Pharmacy Department, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] (S.A.-A.); [email protected] (N.M.M.) 2 Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; [email protected] (H.A.B.); [email protected] (M.A.); [email protected] (D.S.A.) 3 Antimicrobial Resistance Division, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; [email protected] 4 World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt; [email protected] 5 Scientific Computing Associates Corp., River Forest, IL 60305, USA; [email protected] 6 Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; [email protected] 7 Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK * Correspondence: [email protected] Citation: Al-Azzam, S.; Mhaidat, N.M.; Banat, H.A.; Alfaour, M.; Abstract: Coronavirus disease 2019 (COVID-19) has overlapping clinical characteristics with bacterial Ahmad, D.S.; Muller, A.; Al-Nuseirat, respiratory tract infection, leading to the prescription of potentially unnecessary antibiotics. This A.; Lattyak, E.A.; Conway, B.R.; study aimed at measuring changes and patterns of national antimicrobial use for one year preceding Aldeyab, M.A.
    [Show full text]
  • Chapter 12 Antimicrobial Therapy Antibiotics
    Chapter 12 Antimicrobial Therapy Topics: • Ideal drug - Antimicrobial Therapy - Selective Toxicity • Terminology - Survey of Antimicrobial Drug • Antibiotics - Microbial Drug Resistance - Drug and Host Interaction An ideal antimicrobic: Chemotherapy is the use of any chemical - soluble in body fluids, agent in the treatment of disease. - selectively toxic , - nonallergenic, A chemotherapeutic agent or drug is any - reasonable half life (maintained at a chemical agent used in medical practice. constant therapeutic concentration) An antibiotic agent is usually considered to - unlikely to elicit resistance, be a chemical substance made by a - has a long shelf life, microorganism that can inhibit the growth or - reasonably priced. kill microorganisms. There is no ideal antimicrobic An antimicrobic or antimicrobial agent is Selective Toxicity - Drugs that specifically target a chemical substance similar to an microbial processes, and not the human host’s. antibiotic, but may be synthetic. Antibiotics Spectrum of antibiotics and targets • Naturally occurring antimicrobials – Metabolic products of bacteria and fungi – Reduce competition for nutrients and space • Bacteria – Streptomyces, Bacillus, • Molds – Penicillium, Cephalosporium * * 1 The mechanism of action for different 5 General Mechanisms of Action for antimicrobial drug targets in bacterial cells Antibiotics - Inhibition of Cell Wall Synthesis - Disruption of Cell Membrane Function - Inhibition of Protein Synthesis - Inhibition of Nucleic Acid Synthesis - Anti-metabolic activity Antibiotics
    [Show full text]
  • KALETRA (Lopinavir/Ritonavir)
    HIGHLIGHTS OF PRESCRIBING INFORMATION CONTRAINDICATIONS These highlights do not include all the information needed to use • Hypersensitivity to KALETRA (e.g., toxic epidermal necrolysis, Stevens- KALETRA safely and effectively. See full prescribing information for Johnson syndrome, erythema multiforme, urticaria, angioedema) or any of KALETRA. its ingredients, including ritonavir. (4) • Co-administration with drugs highly dependent on CYP3A for clearance KALETRA (lopinavir and ritonavir) tablet, for oral use and for which elevated plasma levels may result in serious and/or life- KALETRA (lopinavir and ritonavir) oral solution threatening events. (4) Initial U.S. Approval: 2000 • Co-administration with potent CYP3A inducers where significantly reduced lopinavir plasma concentrations may be associated with the potential for RECENT MAJOR CHANGES loss of virologic response and possible resistance and cross resistance. (4) Contraindications (4) 12/2019 WARNINGS AND PRECAUTIONS The following have been observed in patients receiving KALETRA: INDICATIONS AND USAGE • The concomitant use of KALETRA and certain other drugs may result in KALETRA is an HIV-1 protease inhibitor indicated in combination with other known or potentially significant drug interactions. Consult the full antiretroviral agents for the treatment of HIV-1 infection in adults and prescribing information prior to and during treatment for potential drug pediatric patients (14 days and older). (1) interactions. (5.1, 7.3) • Toxicity in preterm neonates: KALETRA oral solution should not be used DOSAGE AND ADMINISTRATION in preterm neonates in the immediate postnatal period because of possible Tablets: May be taken with or without food, swallowed whole and not toxicities. A safe and effective dose of KALETRA oral solution in this chewed, broken, or crushed.
    [Show full text]
  • Ombitasvir, Paritaprevir/Ritonavir (Technivie )
    Ombitasvir, paritaprevir/ritonavir (Technivie®) National Abbreviated Review Drug Monograph December 2015 VA Pharmacy Benefits Management Services, Medical Advisory Panel, VISN Pharmacist Executives and Office of Public Health The purpose of VA PBM Services drug monographs is to provide a comprehensive drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. FDA Approval Information1 Description/ Technivie is a fixed-dose combination of ombitasvir, paritaprevir, and ritonavir. Mechanism of Action Ritonavir does not have activity against Hepatitis C virus (HCV); it is included in the regimen as a pharmacokinetic enhancer (i.e. increase concentration of paritaprevir). The other two agents are direct-acting antivirals with different mechanisms of action. Ombitasvir is a NS5A inhibitor and paritaprevir is a NS3/4A protease inhibitor. Indication(s) under Review in Fixed-dose combination of ombitasvir, paritaprevir and ritonavir with ribavirin this document is indicated for the treatment of chronic hepatitis C genotype 4 infections in adults without cirrhosis. NOTE: Per prescribing information, this combination may be administered without ribavirin in treatment-naïve patients who cannot tolerate ribavirin Dosage Form(s) Under Ombitasvir, paritaprevir, ritonavir 12.5/75/50mg tablet Review REMS NO REMS Pregnancy Rating Pregnancy Category B; however, when ribavirin is co-administered, then regimen is contraindicated in pregnant women and in men whose female partners are pregnant. Executive Summary1-2 Efficacy The FDA approval of ombitasvir, paritaprevir and ritonavir with ribavirin was primarily based on one phase 2b randomized, open-label, multi-center trial (called PEARL-1).
    [Show full text]
  • Sofosbuvir/Ledipasvir for HIV •
    Hepatitis C: Drugs and Combinations Melissa Osborn MD Associate Professor MetroHealth Medical Center Case Western Reserve University Cleveland, OH Faculty and Planning Committee Disclosures Please consult your program book. Off-Label Disclosure The following off-label/investigational uses will be discussed in this presentation: • Sofosbuvir/ledipasvir for HIV •. Investigational agents for hepatitis C will be mentioned – Asunaprevir – Daclatasvir – Beclabuvir – Grazoprevir – Elbasvir – GS-5816 Learning Objectives Upon completion of this presentation, learners should be better able to: • apply clinical trial data on new hepatitis C therapies to their patient population. • select which new hepatitis C therapies are appropriate to use with common antiretrovirals. Evolution of interferon-based therapy in HCV-monoinfected genotype 1 patients Sustained Virologic Response 100% 90% 80% 80% 75% 67% 60% 42% 46% 40% 28% 20% 7% 0% Std interferon-alfa IFN + RBV Peg-alfa-2b+RBV Peg-alfa-2a +RBV P/R/Telaprevir P/R/Boceprevir P/R/Simeprevir P/R/Sofosbuvir McHutchison, NEJM 1998; 339: 1485-92 Jacobson, NEJM 2011; 364:2405-16 Fried, NEJM 2002; 347: 975-82 Poordad, NEJM 2011; 364: 1195-206 Manns, Lancet 2001; 358:958-65 Jacobson, AASLD 2013 #1122 Lawitz, NEJM 2013 Evolution of HCV Therapy: Genotype 1 Patients Naïve to Therapy: HIV-HCV coinfection Sustained Virologic Response 80% 75% 74% 67% 61% 60% 46% 42% 40% 28% 29% 20% 17% 7% 7% 0% Std interferon-alfa IFN + RBV Peg-alfa-2b+RBV Peg-alfa-2a +RBV P/R/Telaprevir P/R/Boceprevir Torriani, NEJM, 2004 351:438-50
    [Show full text]
  • Hepatitis C Agents Therapeutic Class Review
    Hepatitis C Agents Therapeutic Class Review (TCR) November 2, 2018 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2004–2018 Magellan Rx Management. All Rights Reserved. FDA-APPROVED INDICATIONS Drug Mfr FDA-Approved Indications Interferons peginterferon alfa-2a Genentech Chronic hepatitis C (CHC) 1 (Pegasys®) .
    [Show full text]
  • Antiviral Agents Active Against Influenza a Viruses
    REVIEWS Antiviral agents active against influenza A viruses Erik De Clercq Abstract | The recent outbreaks of avian influenza A (H5N1) virus, its expanding geographic distribution and its ability to transfer to humans and cause severe infection have raised serious concerns about the measures available to control an avian or human pandemic of influenza A. In anticipation of such a pandemic, several preventive and therapeutic strategies have been proposed, including the stockpiling of antiviral drugs, in particular the neuraminidase inhibitors oseltamivir (Tamiflu; Roche) and zanamivir (Relenza; GlaxoSmithKline). This article reviews agents that have been shown to have activity against influenza A viruses and discusses their therapeutic potential, and also describes emerging strategies for targeting these viruses. HXNY In the face of the persistent threat of human influenza A into the interior of the virus particles (virions) within In the naming system for (H3N2, H1N1) and B infections, the outbreaks of avian endosomes, a process that is needed for the uncoating virus strains, H refers to influenza (H5N1) in Southeast Asia, and the potential of to occur. The H+ ions are imported through the M2 haemagglutinin and N a new human or avian influenza A variant to unleash a (matrix 2) channels10; the transmembrane domain of to neuraminidase. pandemic, there is much concern about the shortage in the M2 protein, with the amino-acid residues facing both the number and supply of effective anti-influenza- the ion-conducting pore, is shown in FIG. 3a (REF. 11). virus agents1–4. There are, in principle, two mechanisms Amantadine has been postulated to block the interior by which pandemic influenza could originate: first, by channel within the tetrameric M2 helix bundle12.
    [Show full text]
  • Sofosbuvir-Based and Elbasvir/Grazoprevir Treatment Fai
    Sofosbuvir-Based and Elbasvir/Grazoprevir Treatment Fai... From www.HCVGuidance.org on September 27, 2021 Sofosbuvir-Based and Elbasvir/Grazoprevir Treatment Failures In general, persons who have experienced treatment failure with a sofosbuvir-based regimen should be retreated with 12 weeks of sofosbuvir/velpatasvir/voxilaprevir. The main exception is persons with genotype 3 and cirrhosis, in whom addition of ribavirin to sofosbuvir/velpatasvir/voxilaprevir for 12 weeks is recommended. Sixteen weeks of glecaprevir/pibrentasvir is an alternative regimen. Elbasvir/grazoprevir treatment failure patients should also be retreated with 12 weeks of sofosbuvir/velpatasvir/voxilaprevir. However, glecaprevir/pibrentasvir for 16 weeks is not recommended as an alternative for this group of patients. Recommended and alternative regimens listed by evidence level and alphabetically for: Sofosbuvir-Based Treatment Failures, With or Without Compensated Cirrhosisa RECOMMENDED DURATION RATING Daily fixed-dose combination of sofosbuvir (400 mg)/velpatasvir (100 12 weeks I, A mg)/voxilaprevir (100 mg)b ALTERNATIVE DURATION RATING Daily fixed-dose combination of glecaprevir (300 mg)/pibrentasvir (120 mg) 16 weeks I, A except for NS3/4 protease inhibitor inclusive combination DAA regimen failuresc Not recommended for genotype 3 infection with sofosbuvir/NS5A inhibitor experience. a For decompensated cirrhosis, please refer to the appropriate section. b Genotype 3: Add weight-based ribavirin if cirrhosis is present and there are no contraindications. c This regimen is not recommended for patients with prior exposure to an NS5A inhibitor plus NS3/4 PI regimens (eg. Elbasvir/grazoprevir). Recommended Regimen Sofosbuvir/Velpatasvir/Voxilaprevir The placebo-controlled, phase 3 POLARIS-1 trial evaluated a 12-week course of the daily fixed-dose combination of sofosbuvir (400 mg)/velpatasvir (100 mg)/voxilaprevir (100mg) in 263 persons with a prior NS5A inhibitor-containing DAA regimen failure.
    [Show full text]