Hematopoiesis

Total Page:16

File Type:pdf, Size:1020Kb

Hematopoiesis UKRAINIAN MEDICAL STOMATOLOGICAL ACADEMY Department of Histology, Cytology and Embryology Hematopoiesis PhD, Teacher of Department of Histology, Cytology and Embryology Skotarenko Tetiana Plan of lecture 1. General characteristics of the organs of hematopoiesis. 2. Embryonic hematopoiesis. 3. Postembryonic hematopoiesis. 4. The modern theory of hematopoiesis. 5. Stem cells. 6. Characterization of cells of all classes of hematopoiesis. 2 Hematopoiesis is development of the blood cells. Mature blood cells have a relatively short life span, and the population must be replaced by the progeny of stem cells produced in the hematopoietic organs. Types of hematopoiesis ► embryonic (prenatal) hematopoiesis which occurs in embryonic life and results in development of a blood as tissue, ► postembryonic (postnatal) hematopoiesis which represents process of physiological regeneration of a blood. Development of erythrocytes name an erythropoiesis, of granulocytes – granulopoiesis, of thrombocytes - thrombopoiesis, of monocytes - monopoiesis, of lymphocytes and immunocytes - lympho- and immunopoiesis. ► In the prenatal period the hematopoiesis serially occurs in several developing organs. ► After birth the hematopoiesis occurs in the bone marrow of a skull, ribs, sternum, pelvic bones, epiphysises of the lengthy bones. Prenatal hematopoiesis 1. The primary (megaloblastic) stage. During 2-3 weeks of development in the wall of the yolk sac the clumps of mesenchymal cells - blood islands - are formed. Prenatal hematopoiesis 1. The primary (megaloblastic) stage Cells on periphery of each island form the endothelium of primary blood vessels. The cells of the central part of an island form the first blood cells - primary erythroblasts - the large cells containing a nucleus and embryonic Hb. Prenatal hematopoiesis 1. The primary (megaloblastic) stage ► Leucocytes and thrombocytes at this stage are not present. ► On 12-th week the hematopoiesis in a yolk sac comes to an end. Prenatal hematopoiesis 2. Hepatic phase In a liver the hematopoiesis begins on 5-6 week of development. Granulocytes, thrombocytes and erythroblasts, and erythrocytes (denuclearized cells) are formed here. By the end of 5-th month intensity of a hematopoiesis in the liver decreases. Prenatal hematopoiesis 3. Splenic phase The hematopoiesis in the lien is most expressed with 4 for 8 month of prenatal development. Here erythrocytes and a small amount of granulocytes and thrombocytes are formed. Directly before of a birth the main function of the lien the formation of lymphocytes become. Prenatal hematopoiesis 4. Hematopoiesis in the thymus On 7-8 week of development in thymus T-lymphocytes are formed. 5. Hematopoiesis in the lymph nodes On 9-10 week of development lymph nodes can produce erythrocytes, granulocytes and megakaryocytes . Prenatal hematopoiesis 6. The bone marrow hematopoiesis (myeloid stage) Within 5-th month of development a hematopoiesis begins in the bone marrow where all types of blood cells are formed. By the moment of a birth, after a birth and at the adult the hematopoiesis is limited to the bone marrow and the lymphoid tissue. Prenatal hematopoiesis 6. The bone marrow hematopoiesis (myeloid phase) When the bone marrow is not capable satisfy the increased inquiry about formation of blood cells, hematopoietic activity of a liver, lien and lymph nodes can be reduced. Postembryonic (postnatal) hematopoiesis process of physiological regeneration of blood 15 16 Postnatal hematopoiesis In the postnatal period the hematopoiesis is carried out in the special hematopoietic tissues: myeloid and lymphoid. The myeloid tissue is functionally leading tissue of the red bone marrow, which is found in the medullary canals of long bones and in the cavities of cancellous bones. The myeloid tissue contains stem cells and is a place of formation of erythrocytes, granulocytes, monocytes, thrombocytes, precursors of lymphocytes. The lymphoid tissue is found in lymphoid organs - a thymus, a spleen, lymph nodes, tonsils, Peyers’s patches, vermiform appendix and the numerous lymphoid formations available in a wall of organs of various systems. In it there is formation of Т-and B-lymphocytes. The general laws of development of formed elements of the blood Now it is proved, that as the common source of development of all formed elements of the blood is pluripotential stem cell. This position for the first time is formulated by professor A.A.Maksimov in the beginning of XX century in the unitary (monophyletic) theory of the hematopoiesis. Classes of the cells in the histogenetic rows of hematopoiesis I - pluripotential stem cell; II - multipotential stem cells; III - uni- or bipotential progenitor cells; IV - precursor cells (blasts), V – maturing cells, VI – mature cells 22 Stem cells ► can produce all blood cell types, because these cells are called pluripotential. Stem cells look like small lymphocytes. ► are concentrated at the adults mainly in the red bone marrow, however are found out in the blood, circulating in which they get in other organs of a hematopoiesis. The basic properties of stem cells: ► 1. Have ability to self-renewing; ► 2. Rarely divide; ► 3. Are capable to form all kinds of formed elements of the blood; ► 4. Are stable against action of damaging factors; ► 5. Found in the places well environment proofed (alveoli in a bone tissue) and having an abundant blood supply; ► 6. Circulate in a blood, migrating in other organs of a hematopoiesis. Multipotential stem cell proliferates and forms ► one cell lineage that will become lymphocytes (lymphoid cells), and ► another lineage that will form the myeloid cells that develop in bone marrow (granulocytes, monocytes, erythrocytes, and megakaryocytes). Both these types of stem cells are called multipotential stem cells. Multipotential stem cells have low mitotic activity, self-renewing, found in the red bone marrow. Progenitor cells The proliferating multipotential stem cells form daughter cells with reduced potentiality: uni- or bipotential progenitor cells. Progenitor cells have high mitotic activity, self-renewing, common in marrow and lymphoid organs. Cells forming colonies of specific cell types are called colony-forming cells (CFC), or colony-forming units (CFU). The convention in naming these various cell colonies is to use the initial letter of the cell each colony produces. Thus, MCFC denotes a monocyte- colony-forming cell, ECFC produces eosinophils, and MGCFC produces monocytes and granulocytes, and so on. Precursor cells (blasts) ► Uni- or bipotential progenitor cells generate precursor cells (blasts). ► Precursor cells have high mitotic activity, not self-renewing, common in marrow and lymphoid organs, unipotential. Each precursor cell forms of a concrete kind of cells. The maturing of each kind of cells passes series of stages which form compartment of maturing cells. Mature cells represent last compartment. Growth factors (hematopoietins) The differentiation of pluripotential cell in unipotential is determined by action of some specific factors – growth factors: erythropoietins (for erythroblasts), granulopoietins (for myeloblasts), lymphopoietins (for lymphoblasts), megakaryopoietins (for megakaryoblasts), etc. Hematopoietic growth factors are produced by stromal components of hematopoietic tissues and organs, and first of all, reticular macrophages. They are produced also by epithelial cells of a thymus, cells of an endothelium, and also the cells which were outside of hematopoietic tissues (for example, erythropoietin is produced by the cells of liver and kidney). Erythropoiesis is process of formation and a maturing of the erythrocytes. Erythron is erythroidal differon, representing set of the cells - from stem cells up to mature erythrocytes. BFU - burst forming unit - is named so on the ability to form quickly colony of erythroidal cells of some hundreds elements. Process of development of erythrocytes is described by sequence: Pluripotential stem cell – myeloid multipotential cell – erythrocyte- burst forming unit (EBFU) – erythrocyte-colony forming unit (ECFU) – proerythroblast – basophilic erythroblast- polychromatophilic erythroblast – orthochromatophilic erythroblast – reticulocyte – Erythrocyte. Process of a differentiation of precursors of erythrocytes in mature formed elements includes: 1) decrease of the cell sizes; 2) progressive decrease of polyribosomes (basophilia) and all organelles; 3) progressive increase and accumulation of hemoglobin in cytoplasm (acidophilia); 4) decrease and further loss of ability to division; 5) condensation of a nucleus and its subsequent removal from the cell. Erythropoiesis 37 Erythropoiesis The first recognizable cell in the erythron is the proerythroblast. It is a large cell with basophilic cytoplasm. The next stage is represented by the basophilic erythroblast (early normoblast) with a strongly basophilic cytoplasm and a condensed nucleus. Basophilia of these two cell types is caused by the large number of polyribosomes involved in the synthesis of hemoglobin. Erythropoiesis During the next stage, polyribosomes decrease and the cytoplasm begin to be filled with hemoglobin. Staining at this stage causes several colours to appear in the cell— the polychromatophilic erythroblast (intermediate normoblast). Erythropoiesis Progressive increase in the cytoplasmic hemoglobin content results in uniformly acidophilic cytoplasm – the orthochromatophilic erythroblast (late normoblast). At a given moment this cell puts forth a series of cytoplasmic protrusions
Recommended publications
  • 1. Introduction and Literature Review
    1. Introduction and literature review 1.1 Introduction 1.1.1 Defintion of blood Blood is described as a specialized connective tissue,which circulates in a closed system of blood vessels. (Monica.C, 2009) 1.1.2 Blood components Plasma is 55% of the total blood ,plasma cosist of albumin,globulin,water,electrolyte and many other organic and inorganic substances. (Monica.C, 2009) Blood cells is 45% of total blood and encompass;White blood cells(WBCs),Red blood cells(RBCs),and Platelets(Plts). (Monica.C, 2009) 1.1.3 Function of blood -Respiration: transport of oxygen from the lung to tissues and carbon dioxide from tissues to the lungs. -Excreation:transport of metabolic waste to the lungs,kidneys,skin and intestine for removal. - Maintain of normal acid –base balance. -Nutrition of body . -Part of immune system. (Monica.C, 2009) 1 1.1.4 Haemopoiesis Is the general aspect of blood cells formation. (Monica.C, 2009) Haemopoiesis occurs at different anatomical sites the course of development from embryonic life to adult life this site is, up to 2 month of gestation.The haemopoiesis occurs in yolk sac of the embryo.This period called (Myeloblastic period). (Monica.C, 2009) 2-7 month of gestation, this period called (Haepatic period). (Monica.C, 2009) Only important site of all hemopoiesis site after birth,an exception is lymphocyte production which occur in other organ in addition to the bone marrow.This period called(Myeloid period). (Monica.C, 2009) 1.1.5 Development of haemopoiesis The general most commonly accepted view is that blood cells development from small population of stem cells.
    [Show full text]
  • Impaired Production and Increased Apoptosis of Neutrophils in Granulocyte Colony-Stimulating Factor Receptor–Deficient Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 5, 491±501, November, 1996, Copyright 1996 by Cell Press Impaired Production and Increased Apoptosis of Neutrophils in Granulocyte Colony-Stimulating Factor Receptor±Deficient Mice Fulu Liu, Huai Yang Wu, Robin Wesselschmidt, decrease in granulocytic precursors in their bone mar- Tad Kornaga, and Daniel C. Link row (Lieschke et al., 1994). Division of Bone Marrow Transplantation In addition to its effect on granulopoiesis, G-CSF may and Stem Cell Biology also contribute to the regulation of multipotential hema- Department of Medicine topoietic progenitors. The administration of large doses Washington University Medical School of G-CSF is associated with a dramatic increase in the St. Louis, Missouri 63110-1093 levels of hematopoietic stem cells and progenitor cells in the peripheral blood (Bungart et al., 1990; de Haan et al., 1995). In vitro, direct effects of G-CSF on primitive progenitor cells have been demonstrated. G-CSF is able Summary to stimulate the formation of granulocyte/macrophage colonies (CFU-GM) from purified CD34-positiveprogeni- We have generated mice carrying a homozygous null tors (Haylock et al., 1992). Furthermore, like interleu- mutation in the granulocyte colony-stimulating factor kin-6 (IL-6), G-CSF exhibits synergistic activity with IL-3 receptor (G-CSFR) gene. G-CSFR-deficient mice have to support murine multipotential blast cell colony forma- decreased numbers of phenotypically normal circulat- tion in cultures of spleen cells from 5-fluorouracil- ing neutrophils. Hematopoietic progenitors are de- treated mice (Ikebuchi et al., 1988).
    [Show full text]
  • Β-Adrenergic Modulation in Sepsis Etienne De Montmollin, Jerome Aboab, Arnaud Mansart and Djillali Annane
    Available online http://ccforum.com/content/13/5/230 Review Bench-to-bedside review: β-Adrenergic modulation in sepsis Etienne de Montmollin, Jerome Aboab, Arnaud Mansart and Djillali Annane Service de Réanimation Polyvalente de l’hôpital Raymond Poincaré, 104 bd Raymond Poincaré, 92380 Garches, France Corresponding author: Professeur Djillali Annane, [email protected] Published: 23 October 2009 Critical Care 2009, 13:230 (doi:10.1186/cc8026) This article is online at http://ccforum.com/content/13/5/230 © 2009 BioMed Central Ltd Abstract in the intensive care setting [4] – addressing the issue of its Sepsis, despite recent therapeutic progress, still carries unaccep- consequences in sepsis. tably high mortality rates. The adrenergic system, a key modulator of organ function and cardiovascular homeostasis, could be an The present review summarizes current knowledge on the interesting new therapeutic target for septic shock. β-Adrenergic effects of β-adrenergic agonists and antagonists on immune, regulation of the immune function in sepsis is complex and is time cardiac, metabolic and hemostasis functions during sepsis. A dependent. However, β activation as well as β blockade seems 2 1 comprehensive understanding of this complex regulation to downregulate proinflammatory response by modulating the β system will enable the clinician to better apprehend the cytokine production profile. 1 blockade improves cardiovascular homeostasis in septic animals, by lowering myocardial oxygen impact of β-stimulants and β-blockers in septic patients. consumption without altering organ perfusion, and perhaps by restoring normal cardiovascular variability. β-Blockers could also β-Adrenergic receptor and signaling cascade be of interest in the systemic catabolic response to sepsis, as they The β-adrenergic receptor is a G-protein-coupled seven- oppose epinephrine which is known to promote hyperglycemia, transmembrane domain receptor.
    [Show full text]
  • Differentiation of Pluripotent Cells Differenzierung Pluripotenter Zellen Différenciation De Cellules Pluripotentes
    (19) TZZ Z_¥_T (11) EP 2 401 364 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 5/0781 (2010.01) C12N 5/071 (2010.01) 22.04.2015 Bulletin 2015/17 (86) International application number: (21) Application number: 10707179.7 PCT/US2010/025776 (22) Date of filing: 01.03.2010 (87) International publication number: WO 2010/099539 (02.09.2010 Gazette 2010/35) (54) DIFFERENTIATION OF PLURIPOTENT CELLS DIFFERENZIERUNG PLURIPOTENTER ZELLEN DIFFÉRENCIATION DE CELLULES PLURIPOTENTES (84) Designated Contracting States: • WANG LISHENG ET AL: "Endothelial and AT BE BG CH CY CZ DE DK EE ES FI FR GB GR hematopoietic cell fate of human embryonic stem HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL cells originates from primitive endothelium with PT RO SE SI SK SM TR hemangioblastic properties" IMMUNITY, CELL PRESS, US LNKD- DOI:10.1016/J.IMMUNI. (30) Priority: 27.02.2009 US 156304 P 2004.06.006, vol. 21, no. 1, 1 July 2004 (2004-07-01), pages 31-41, XP002484358 ISSN: (43) Date of publication of application: 1074-7613 04.01.2012 Bulletin 2012/01 • BHATIA MICKIE: "Hematopoiesis from human embryonic stem cells." ANNALS OF THE NEW (73) Proprietor: Cellular Dynamics International, Inc. YORK ACADEMY OF SCIENCES JUN 2007 LNKD- Madison, WI 53711 (US) PUBMED:17332088, vol. 1106, June 2007 (2007-06), pages 219-222, XP007912752 ISSN: (72) Inventors: 0077-8923 • RAJESH, Deepika • KENNEDY MARION ET AL: "Development of the Madison, WI 53711 (US) hemangioblast defines the onset of • LEWIS, Rachel hematopoiesis in human ES cell differentiation Madison, WI 53711 (US) cultures" BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol.
    [Show full text]
  • Monocyte Alterations in Rheumatoid Arthritis Are Dominated by Preterm
    Ann Rheum Dis: first published as 10.1136/annrheumdis-2017-211649 on 30 November 2017. Downloaded from Basic and translational research EXTENDED REPORT Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint Biljana Smiljanovic,1 Anna Radzikowska,2 Ewa Kuca-Warnawin,2 Weronika Kurowska,2 Joachim R Grün,3 Bruno Stuhlmüller,1 Marc Bonin,1 Ursula Schulte-Wrede,3 Till Sörensen,1 Chieko Kyogoku,3 Anne Bruns,1 Sandra Hermann,1 Sarah Ohrndorf,1 Karlfried Aupperle,1 Marina Backhaus,1 Gerd R Burmester,1 Andreas Radbruch,3 Andreas Grützkau,3 Wlodzimierz Maslinski,2 Thomas Häupl1 Handling editor Tore K Kvien ABSTRACT of life.1 2 Infiltration of monocytes along with T and Objective Rheumatoid arthritis (RA) accompanies B cells into the joint and production of inflamma- ► Additional material is published online only. To view infiltration and activation of monocytes in inflamed tory mediators characterise the immunopathology please visit the journal online joints. We investigated dominant alterations of RA of this disease. The influence of the monocytic (http:// dx. doi. org/ 10. 1136/ monocytes in bone marrow (BM), blood and inflamed lineage in shaping the immune response is substan- annrheumdis- 2017- 211649). joints. tial and interferes with both the innate and adap- Methods CD14+ cells from BM and peripheral blood tive arm of immunity. Thus, it is not surprising 1Department of Rheumatology and Clinical Immunology, (PB) of patients with RA and osteoarthritis (OA) were that controlling inflammation in disease-modifying Charité Universitätsmedizin, profiled with GeneChip microarrays.D etailed functional antirheumatic drug (DMARD) non-responders Berlin, Germany analysis was performed with reference transcriptomes may be achieved when targeting monocyte-derived 2 Department of Pathophysiology of BM precursors, monocyte blood subsets, monocyte cytokines, tumour necrosis factor (TNF), inter- and Immunology, National activation and mobilisation.
    [Show full text]
  • Erythroid Lineage Cells in the Liver: Novel Immune Regulators and Beyond
    Review Article Erythroid Lineage Cells in the Liver: Novel Immune Regulators and Beyond Li Yang*1 and Kyle Lewis2 1Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 2Division of Gastroenterology, Hepatology & Nutrition Developmental Biology Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA Abstract evidenced by both in vivo and in vitro studies in mouse and human. In addition, we also shed some light on the emerging The lineage of the erythroid cell has been revisited in recent trends of erythroid cells in the fields of microbiome study and years. Instead of being classified as simply inert oxygen regenerative medicine. carriers, emerging evidence has shown that they are a tightly regulated in immune potent population with potential devel- Erythroid lineage cells: Natural history in the liver opmental plasticity for lineage crossing. Erythroid cells have been reported to exert immune regulatory function through Cellular markers for staging of erythroid cells secreted cytokines, or cell-cell contact, depending on the conditions of the microenvironment and disease models. In There are different stages during erythropoiesis. The cells of this review, we explain the natural history of erythroid cells in interest for this review, referred as “erythroid lineage cells” the liver through a developmental lens, as it offers perspec- or “CD71+ erythroid cells”, represent a mix of erythroblasts, tives into newly recognized roles of this lineage in liver including basophilic, polychromatic, and orthochromatic biology. Here, we review the known immune roles of erythroid erythroblasts. A widely used assay relies on the cell- cells and discuss the mechanisms in the context of disease surface markers CD71 and Ter119, and on the flow-cyto- models and stages.
    [Show full text]
  • Lesson-1 Composition of Blood and Normal Erythropoiesis
    Composition of Blood and Normal Erythropoiesis MODULE Hematology and Blood Bank Technique 1 COMPOSITION OF BLOOD AND Notes NORMAL ERYTHROPOIESIS 1.1 INTRODUCTION Blood consists of a fluid component- plasma, and a cellular component comprising of red cells, leucocytes and platelets, each of them with distinct morphology and a specific function. Erythrocytes or red cells are biconcave discs. They do not have a nucleus and are filled with hemoglobin which carries oxygen to tissues and carbon dioxide from the tissues to the lungs. Platelets are small cells. They also do not have a nucleus and are essential for clotting of blood. Leucocytes play an important role in fighting against infection. All these cells arise from a single cell called as the Hematopoietic stem cell. The process of formation of these cells is called Hematopoiesis. In this lesson we will learn the different stages in the development of red cells. The process of formation of red cells is called erythropoiesis. OBJECTIVES After reading this lesson, you will be able to: z explain the composition of blood z describe various stages in the formation of red cells z explain the precautions in handling blood and blood products z explain steps for preventing injury from sharp items. 1.2 SITES OF HEMATOPOIESIS It begins in the early prenatal period, within the first two weeks, in the yolk sac in the form of blood islands and is known as primitive hematopoiesis. The red cells formed at this time are nucleated and contain embryonic type of hemoglobin which differs in the type of globin chains from the adult hemoglobin.
    [Show full text]
  • Haematopoiesis to Describe the Components of Normal Blood, Their Relative Proportions and Their Functions
    Haematopoiesis To describe the components of normal blood, their relative proportions and their functions Blood 8% of body weight Plasma (55%) clear, 90% water, contains salts, enzymes, proteins WBCs and platelet (1%) RBCs (45%) bioconcave– disc, no nucleus = anuclear- 120days lifespan Immature = blasts– Mature= cytes In white blood cells myeloblast goes to neutrophils, basophils, eosinophils Monoblast= monocyte can also become dendritic cells and macrophages – White blood cells (leukocytes)– Polymorphonuclear= neutrophils, eosinophil s, basophils Mononuclear= lymphocytes= T cells, B cells and’ monocytes Lymphoid= NK cells, T-Lymphocyte, B-lymphocyte Myeloid= Monocyte, erythrocyte, neutrophils, basophils, eosinophils, mast cells, megakaryocyte, mast cells BOTH Dendritic cells (from monocyte in myeloid) (lymphoid precursor) Neutrophil – protection from bacteria and fungi Eosinophil- protection against parasites Basophil – increase during allergic reactions Lymphocytes – T cells- protection against viruses, B cells immunoglobulin synthesis Monocyte- protection from back bacteria and fungi phagocytosis – How do blood go from bone to blood vessels? – The bones are perfused with blood vessels- How do we investigate blood? In venepuncture, the superficial veins of the upper limbs are selected and hollow needle is inserted through the skin into the veins. Blood is then collected into evacuated tubes. These veins are present in numbers and are easily accessible. Anticoagulant, EDTA is used to stop blood clotting 1.Using Automated the sample full collected…. blood count Whole blood for a FBC is usually taken into an EDTA tube to stop it from clotting. The blood is well mixed and put through a machine called an automated analyser, counts the numbers and size of RBC and platelets within the blood using sensors Reticulocyte Assessing the young RBCs numbers performed by automated cell counters give indication of output of young RBC by bone marrow – 2.
    [Show full text]
  • An Introduction to Stem Cell Biology
    An Introduction to Stem Cell Biology Michael L. Shelanski, MD,PhD Professor of Pathology and Cell Biology Columbia University Figures adapted from ISSCR. Presentations of Drs. Martin Pera (Monash University), Dr.Susan Kadereit, Children’s Hospital, Boston and Dr. Catherine Verfaillie, University of Minnesota Science 1999, 283: 534-537 PNAS 1999, 96: 14482-14486 Turning Blood into Brain: Cells Bearing Neuronal Antigens Generated in Vitro from Bone Marrow Science 2000, 290:1779-1782 From Marrow to Brain: Expression of Neuronal Phenotypes in Adult Mice Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., McKercher, S.R. Science 2000, 290:1775-1779 Brazelton, T.R., Rossi, F.M., Keshet, G.I., Blau, H.M. Nature 2001, 410:701-705 Nat Med 2000, 11: 1229-1234 Stem Cell FAQs Do you need to get one from an egg? Must you sacrifice an Embryo? What is an ES cell? What about adult stem cells or cord blood stem cells Why can’t this work be done in animals? Are “cures” on the horizon? Will this lead to human cloning – human spare parts factories? Are we going to make a Frankenstein? What is a stem cell? A primitive cell which can either self renew (reproduce itself) or give rise to more specialised cell types The stem cell is the ancestor at the top of the family tree of related cell types. One blood stem cell gives rise to red cells, white cells and platelets Stem Cells Vary in their Developmental capacity A multipotent cell can give rise to several types of mature cell A pluripotent cell can give rise to all types of adult tissue cells plus extraembryonic tissue: cells which support embryonic development A totipotent cell can give rise to a new individual given appropriate maternal support The Fertilized Egg The “Ultimate” Stem Cell – the Newly Fertilized Egg (one Cell) will give rise to all the cells and tissues of the adult animal.
    [Show full text]
  • Bleeding Fevers! Thrombocytopenia and Neutropenia
    Bleeding fevers! Thrombocytopenia and neutropenia Faculty of Physician Associates 4th National CPD Conference Monday 21st October 2019, Royal College of Physicians, London @jasaunders90 | #FPAConf19 Jamie Saunders MSc PA-R Physician Associate in Haematology, Guy’s and St Thomas’ NHS Foundation Trust Board Member, Faculty of Physician Associates Bleeding fevers; Thrombocytopenia and neutropenia Disclosures / Conflicts of interest Nothing to declare Professional Affiliations Board Member, Faculty of Physician Associates Communication Committee, British Society for Haematology Education Committee, British Society for Haematology Bleeding fevers; Thrombocytopenia and neutropenia What’s going to be covered? - Thrombocytopenia (low platelets) - Neutropenia (low neutrophils) Bleeding fevers; Thrombocytopenia and neutropenia Thrombocytopenia Bleeding fevers; Thrombocytopenia (low platelets) Pluripotent Haematopoietic Stem Cell Myeloid Stem Cell Lymphoid Stem Cell A load of random cells Lymphoblast B-Cell Progenitor Natural Killer (NK) Precursor Megakaryoblast Proerythroblast Myeloblast T-Cell Progenitor Reticulocyte Megakaryocyte Promyelocyte Mature B-Cell Myelocyte NK-Cell Platelets Red blood cells T-Cell Metamyelocyte IgM Antibody Plasma Cell Secreting B-Cell Basophil Neutrophil Eosinophil IgE, IgG, IgA IgM antibodies antibodies Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology Mega Liver TPO (Thrombopoietin) TPO-receptor No negative feedback to liver Plt Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology
    [Show full text]
  • Nucleated Red Blood Cells
    Erythropoiesis Nucleated red blood cells Proerythroblast Physiology The red cell line develops from a pluripotent stem cell. With adults under physiological conditions, this development takes place exclusively in the bone marrow. Stimulated Glycophorin 103 by erythropoietin, the stem cells develop via Transferrin receptor progenitors, which are not identifiable using 102 MGG staining, into proerythroblasts, which are the first red blood cell precursors recog- 101 HLe-1 nizable by panoptic staining. Size A: mature red cell; B: reticulocyte; C: orthochromatic eryth- roblast; D: polychromatic erythroblast; E: basophilic eryth- roblast; F: proerythroblast; G: undifferentiated blast G F E D C B A Basophilic erythroblast Proerythroblast Blast-like cell. Size 14 – 18 μm. Nucleus-cytoplasm ratio (N:C ratio) 80 %. Chromatin slightly clumped with one or more prominent nucleoli, slightly more dense than that of a myeloblast. Cytoplasm dark blue, agranular, often with perinuclear halo, which repesents the Golgi apparatus. Erythroblast Smaller than the proerythroblasts. Nuclear chromatin heterogeneous with condensed or clumped DNA. Generally erythroblasts (E) are separated into three maturation stages. Similarities: decrease in cell and nucleus size, chromatin more and more unevenly distributed and darker stained. Differences: colour of the cytoplasm changing from blue (RNA) to red (haemoglobin). By this colour, erythroblasts are divided into basophilic E (blue), N:C ratio 70 – 80 %, polychromatic E (mixed colour: blue-grey/red), N:C ratio 30 – 50 %, and orthochromatic E (pink-orange), N:C ratio approx. 30 %. Orthochromatic erythroblasts are Polychromatic erythroblast Orthochromatic erythroblast the last maturation stage and the nucleus undergoes pyknotic degeneration. During the following four days RNA remnants are degraded.
    [Show full text]
  • Stem Cell Therapy for Neurodegenerative Diseases
    Review Stem Cell Therapy for Neurodegenerative Diseases Hanyang Med Rev 2015;35:229-235 http://dx.doi.org/10.7599/hmr.2015.35.4.229 1 2,3 2,3 pISSN 1738-429X eISSN 2234-4446 Jong Zin Yee , Ki-Wook Oh , Seung Hyun Kim 1Hanyang University College of Medicine, Seoul, Korea 2Department of Neurology, Hanyang University College of Medicine, Seoul, Korea 3Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Korea Neurodegenerative diseases are the hereditary and sporadic conditions which are charac- Correspondence to: Seung Hyun Kim Department of Neurology, Hanyang terized by progressive neuronal degeneration. Neurodegenerative diseases are emerging University College of Medicine, as the leading cause of death, disabilities, and a socioeconomic burden due to an increase 222 Wangsimni-ro, Seongdong-gu, in life expectancy. There are many neurodegenerative diseases including Alzheimer’s dis- Seoul 04763, Korea Tel: +82-2-2290-8371 ease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and multiple Fax: +82-2-2296-8370 sclerosis, but we have no effective treatments or cures to halt the progression of any of E-mail: [email protected] these diseases. Stem cell-based therapy has become the alternative option to treat neuro- degenerative diseases. There are several types of stem cells utilized; embryonic stem cells, Received 4 September 2015 Revised 6 October 2015 induced pluripotent stem cells, and adult stem cell (mesenchymal stem cells and neural Accepted 13 October 2015 progenitor cells). In this review, we summarize recent advances in the treatments and the This is an Open Access article distributed under limitations of various stem cell technologies.
    [Show full text]