Article (Refereed) - Postprint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ARTICLE IN PRESS European Journal of PROTISTOLOGY European Journal of Protistology 44 (2008) 299–307 www.elsevier.de/ejop Morphology and molecular phylogeny of Haplozoon praxillellae n. sp. (Dinoflagellata): A novel intestinal parasite of the maldanid polychaete Praxillella pacifica Berkeley Sonja RueckertÃ, Brian S. Leander Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 Received 11 December 2007; received in revised form 3 April 2008; accepted 5 April 2008 Abstract The genus Haplozoon comprises a group of endoparasites infecting the intestines of polychaete worms. Comparative studies using light microscopy, scanning and transmission electron microscopy, and small subunit rDNA have shown that these organisms are very unusual dinoflagellates. To date, there is only one species known from the Pacific Ocean, namely Haplozoon axiothellae Siebert. In this study, we describe Haplozoon praxillellae n. sp. from the intestine of the Pacific maldanid polychaete Praxillella pacifica Berkeley. -
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
COMPARISON of HEMOLYTIC ACTIVITY of Amphidinium Carterae and Amphidinium Klebsii
ENVIRONMENTAL REGULATION OF TOXIN PRODUCTION: COMPARISON OF HEMOLYTIC ACTIVITY OF Amphidinium carterae AND Amphidinium klebsii Leigh A. Zimmermann A Thesis Submitted to University of North Carolina Wilmington in Partial Fulfillment Of the Requirements for the Degree of Master of Science Center for Marine Science University of North Carolina Wilmington 2006 Approved by Advisory Committee ______________________________ ______________________________ ______________________________ Chair Accepted by _____________________________ Dean, Graduate School This thesis was prepared according to the formatting guidelines of the Journal of Phycology. TABLE OF CONTENTS ABSTRACT................................................................................................................................... iv ACKNOWLEDGEMENTS.............................................................................................................v LIST OF TABLES......................................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION ...........................................................................................................................1 METHODS AND MATERIALS.....................................................................................................6 Algal Culture........................................................................................................................6 -
Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland
fmicb-10-01332 June 8, 2019 Time: 10:19 # 1 ORIGINAL RESEARCH published: 11 June 2019 doi: 10.3389/fmicb.2019.01332 Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth Dumack1,2, Kathleen M. Regan6, Sven Marhan7, Runa S. Boeddinghaus7, Matthias C. Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7 and Michael Bonkowski1,2 1 Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany, 3 Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany, 4 Institute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany, 5 Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany, 6 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, 7 Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany Edited by: Soil protists are increasingly appreciated as essential components of soil foodwebs; Jaak Truu, University of Tartu, Estonia however, there is a dearth of information on the factors structuring their communities. Reviewed by: Here we investigate the importance of different biotic and abiotic factors as key Anne Winding, drivers of spatial and seasonal distribution of protistan communities. We conducted Aarhus University, Denmark 2 Ida Karlsson, an intensive survey of a 10 m grassland plot in Germany, focusing on a major group Swedish University of Agricultural of protists, the Cercozoa. From 177 soil samples, collected from April to November, Sciences, Sweden we obtained 694 Operational Taxonomy Units representing 6 million Illumina reads. -
Denis BAURAIN Département Des Sciences De La Vie Université De Liège Société Royale Des Sciences De Liège 20 Septembre 2012 Plan De L’Exposé
L’évolution des Eucaryotes Denis BAURAIN Département des Sciences de la Vie Université de Liège Société Royale des Sciences de Liège 20 septembre 2012 Plan de l’exposé 1. Qu’est-ce qu’un Eucaryote ? 2. Quelle est la diversité des Eucaryotes ? 3. Quelles sont les relations de parenté entre les grands groupes d’Eucaryotes ? 4. D’où viennent les Eucaryotes ? Qu’est-ce1 qu’un Eucaryote ? Eukaryotic Cells définition ultrastructurale : organelles spécifiques • noyau (1) • nucléole (2) • RE (5, 8) • Golgi (6) • centriole(s) (13) • mitochondrie(s) (9) • chloroplaste(s) • ... http://en.wikipedia.org/ A eukaryotic gene is arranged in a patchwork of coding (exons) and non-coding sequences (introns). Introns are eliminated while exons are spliced together to yield the mature mRNA used for protein synthesis. http://reflexions.ulg.ac.be/ Gene DNA Transcription Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 pre-mRNA Alternatif splicing mature mRNA Translation Protein In many Eukaryotes, almost all genes can lead to different proteins through a process termed alternative splicing. http://reflexions.ulg.ac.be/ REVIEWS Box 2 | Endosymbiotic evolution and the tree of genomes Intracellular endosymbionts that originally descended from free-living prokaryotes have been important in the evolution of eukaryotes by giving rise to two cytoplasmic organelles. Mitochondria arose from α-proteobacteria and chloroplasts arose from cyanobacteria. Both organelles have made substantial contributions to the complement of genes that are found in eukaryotic nuclei today. The figure shows a schematic diagram of the evolution of eukaryotes, highlighting the incorporation of mitochondria and chloroplasts into the eukaryotic lineage through endosymbiosis and the subsequent co-evolution of the nuclear and organelle genomes. -
Unfolding the Secrets of Coral–Algal Symbiosis
The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin. -
Parasitism of Photosynthetic Dinoflagellates in a Shallow Subestuary of Chesapeake Bay, USA
- AQUATIC MICROBIAL ECOLOGY Vol. 11: 1-9, 1996 Published August 29 Aquat Microb Ecol Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, USA D. W. Coats*,E. J. Adam, C. L. Gallegos, S. Hedrick Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA ABSTRACT- Rhode Rlver (USA)populatlons of the red-tlde d~noflagellatesGyrnnodinium sanguineum Hlrasaka, 1922, Cyi-odinium uncatenum Hulburt, 1957, and Scnppsiella trochoidea (Steln) Loeblich 111, 1976, were commonly infected by thelr parasltlc relative Amoebophrya cei-atil Cachon, 1964, dunng the summer of 1992. Mean ~nfectionlevels were relatively low, wlth data for vertically Integrated sam- ples averaging 1.0, 1.9, and 6 5% for G. sangujneum, G. uncatenum, and S, trocho~dea,respectively However, epldemlc outbreaks of A. ceratii (20 to 80% hosts parasitized) occurred in G. uncatenum and S. trochoidea on several occasions, wlth peak levels of parasitism associated wlth decreases ~n host abundance. Estimates for paraslte Induced mortality indlcate that A, ceratil 1s capable of removlng a significant fraction of dinoflagellate blomass, with epldemics In the upper estuary cropplng up to 54% of the dominant bloom-forming species, G uncatenum, dally. However, epldemics were usually geo- graphically restncted and of short duration, with dally losses for the 3 host species due to parasitism averaging 1 to 3 % over the summer. Thus, A ceratli appears capable of exerting a controlling Influence on bloonl-form~ngdinoflagellates of the Rhode River only when conditions are suitable for production of epidemlc infections. Interestingly, epidemics falled to occur in multlple d~noflagellatetaxa sunulta- neously, even when alternate host specles were present at hlgh densities. -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates. -
4/9/15 1 Alveolates
4/9/15 Bayli Russ ALVEOLATES April 9, 2015 WHAT IS IT? ¡ Alveolates- Major superphylum of protists ¡ Group of single-celled eukaryotes that get their nutrition by predation, photoautotrophy, and intracellular parasitism ¡ Spherical basophilic organisms (6-9 µm diameter) ¡ Most notable shared characteristic is presence of cortical alveoli, flattened vesicles packed into linear layer supporting the membrane, typically forming a flexible pellicle (Leander, 2008) WHAT IS IT? ¡ 3 main subgroups: § Ciliatesà predators that inhabit intestinal tracts and flesh § Dinoflagellatesà mostly free living predators or photoautotrophs, release toxins § Apicomplexansà obligate parasite; invade host cells ¡ Several other lineages such as: § Colpodella § Chromera § Colponema § Ellobiopsids § Oxyrrhis § Rastrimonas § Parvilucifera § Perkinsus (Leander, 2008) 1 4/9/15 HOW DOES IT KILL AMPHIBIANS? ¡ Cause infection and disease in amphibian populations § Infection = parasite occurs in host; occupying intestinal lumen § Disease = advanced infection; presence of spores in tissues; occupying intestinal mucosa, liver, skin, rectum, mesentery, adipose tissue, pancreas, spleen, kidney, and somatic musculature ¡ Effects on organs § Filters into host’s internal organs in mass amounts § Causes organ enlargement and severe tissue alteration § Obliterates kidney and liver structure § System shut-down = DEATH ¡ How its introduced to environment § Birds § Insects ¡ How it spreads/transmission: § Ingestion of spores § Feces of infected individuals § Tissues from dead/dying -
(Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson -
Protistology Review of Diversity and Taxonomy of Cercomonads
Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from