Carmustine Replacement in Intensive Chemotherapy Preceding Reinjection of Autologous Hscs in Hodgkin and Non-Hodgkin Lymphoma: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Carmustine Replacement in Intensive Chemotherapy Preceding Reinjection of Autologous Hscs in Hodgkin and Non-Hodgkin Lymphoma: a Review Bone Marrow Transplantation (2017) 52, 941–949 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0268-3369/17 www.nature.com/bmt REVIEW Carmustine replacement in intensive chemotherapy preceding reinjection of autologous HSCs in Hodgkin and non-Hodgkin lymphoma: a review G Damaj1,2, J Cornillon3, K Bouabdallah4, R Gressin5, S Vigouroux3, T Gastinne6, F Ranchon7, H Ghésquières8, G Salles8, I Yakoub-Agha9 and E Gyan10 for Lymphoma Study Association and the French Society of Bone Marrow Transplantation and Cellular Therapy High-dose chemotherapy preceding autologous hematopoietic stem cell transplantation (auto-HSCT) is one treatment option for patients with Hodgkin (HL) or non-Hodgkin lymphoma (NHL). The most frequently used intensive chemotherapy is a combination of carmustine (BCNU), etoposide, cytarabine and melphalan (BEAM). However, BCNU is consistently in short supply, and there has been a recent dramatic increase in its cost, necessitating the utilization of conditioning alternatives. The busulfan-based conditioning regimen known as the busulfan–cyclophosphamide–etoposide (BuCyE) combination is the second most-studied conditioning regimen worldwide after BEAM, and it exhibits a benefit/risk ratio that is comparable to that of BEAM. In addition to these two combinations, the present manuscript also summarizes data reported for other conditioning combinations. Owing to the lack of prospective and comparative studies, a comparison of the toxicities and medicoeconomical profiles of these treatments is warranted to identify effective replacements for BCNU-based conditioning. Bone Marrow Transplantation (2017) 52, 941–949; doi:10.1038/bmt.2016.340; published online 23 January 2017 INTRODUCTION prospective study of patients who underwent transplant as a first 10 Intensive chemotherapy followed by autologous hematopoietic response. stem cell transplantation (auto-HSCT) is one therapeutic option for When selecting high-dose therapy, both long-term treatment a subset of eligible patients with Hodgkin lymphoma (HL) or efficacy and potential short- and long-term toxicities must be non-Hodgkin lymphoma (NHL).1 A previous European Blood and considered. The toxicity of TBI in the setting of auto-HSCT has Marrow Transplantation Society survey reported on 1880 patients progressively decreased its use because of the risk of acute leukemia, secondary myelodysplastic syndromes and cumulative with HL and 6000 patients with NHL who received auto-HSCT in 11,12 2013.2 Auto-HSCT has been increasingly performed over the years organ toxicity in the case of previous radiation, primarily in HL. and has become one of the most common treatment approaches The BEAM regimen, which utilizes a combination of for aggressive forms of lymphoma.2 carmustine (BCNU), etoposide, cytarabine and melphalan, fi is the most frequently used conditioning regimen before Auto-HSCT was not widely adopted as a rst-line treatment for 2–4 high-risk patients with diffuse large B-cell lymphoma in the auto-transplantation. However, BCNU is in short supply and fi rituximab era, and this treatment has consequently not been has a high cost, necessitating the identi cation of conditioning recommended outside of clinical trials. However, auto-HSCT alternatives. In the absence of prospective randomized studies has recognized benefits for chemosensitive patients presenting comparing different types of conditioning, we reviewed the data with initially chemotherapy-refractory disease or those who have from the most important and largest published studies to propose relapsed after first-line therapy and are eligible for intensive recommendations for alternative chemotherapies to be used as therapy.3,4 For mantle cell lymphoma, auto-HSCT has demon- conditioning regimens before auto-HSCT. strated benefits associated with response and survival.5 For follicular lymphoma, auto-HSCT is not recommended as a consolidation first-line treatment because of its excessive toxicity METHODOLOGY and lack of benefit for overall survival (OS).6 However, this The French Society of Bone Marrow Transplantation and Cellular therapeutic approach is used in patients with sensitive relapse.7,8 Therapy (SFGMTC) and the Lymphoma Study Association (LYSA) The role of auto-HSCT for the treatment of peripheral T-cell established a collaborative work group. The group met to discuss lymphoma is not clearly established because of the rarity of this BEAM conditioning alternatives for auto-transplantation for disease and the absence of randomized studies.9 Nevertheless, a lymphoma. An extensive literature review was performed focusing Nordic team recently reported a high PFS rate of 44% in a phase II on high-dose therapy in the setting of lymphoma. The group 1Institut d'hématologie de Basse Normandie, Centre Hospitalier Universiatire, Faculté de médecine, Université de Basse-Normandie, Caen, France; 2Microenvironnement Cellulaire et Pathologies, Normandie University, Caen, France; 3Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France; 4Hématologie et Thérapie Cellulaire, CHU de Bordeaux, Pessac, France; 5Hématologie, CHU de Grenoble, Grenoble, France; 6Hématologie, CHU de Nantes, Nantes, France; 7Unité de Pharmacie Clinique Oncologique, Groupement Hospitalier Sud, Hospices Civils de Lyon, Lyon, France; 8Hématologie, Hospices Civils de Lyon, Lyon, France; 9Maladies du sang, CHRU de Lille, Lille, France and 10Hématologie et Thérapie Cellulaire, CHU de Tours, Tours, France. Correspondence: Professor G Damaj, Institut d’Hématologie de Basse Normandie, Centre Hospitalier Universiatire (CHU), Faculté de médecine, Université de Basse-Normandie, Avenue de la Côte de Nacre, Caen 14033, France. E-mail: [email protected] and [email protected] Received 29 March 2016; revised 8 November 2016; accepted 16 November 2016; published online 23 January 2017 Conditioning regimens for lymphoma G Damaj et al 942 Table 1. Main toxicities related to BCNU-based conditioning regimens Caballero et al.87 Puig et al.13 Kim et al.82 Sakellari et al.88 Histology NHL, HL NHL, HL NHL NHL, HL No. of patients 148 113 65 137 Disease status at transplant,n(%) First line 49 (33) 61 (54) First relapse = 15 (23) First relapse = 33 (24) More than first line 99 (67) 52 (46) More than first relapse = 50 (77) More than first relapse = 104 (76) Age, median (range) 42 (4–63) CBV = 36 (18–62) BEAM = 46 (15–65) o34 Years = 72 BEAM = 48 (18–70) BuCyE = 46,5 (28–65) 434 Years = 65 Mucositis,n(%) 84% Gr ⩾ 2 G1–2 Not specified CBV = 47 BEAM = 17 BEAM = 38/BuEM = 25 G3–4 30% BEAM = 13 BuCyE = 9 BEAM = 3/BuEM = 24 P = 0.004 P = NS Po0.001 Gastroenteritis,n(%) 69% Gr ⩾ 2 G1–2 Not specified CBV = 17; BEAM = 6 BEAM = 17 BEAM = 19/BuEM = 22 G3–4 n = 25 P = NS BuCyE = 4 BEAM = 24/BuEM = 8 P = NS Po0.001 Kidney failure,n(%) — G1–2 8% (Gr 1) CBV = 9; BEAM = 0 BEAM = 7/BuEM = 3 G3–4 P = 0.02 P = NS PMN recovery time BM = 20 (11–51) CBV = 14 (9–26) BEAM = 11 (8–20) BEAM = 9(6–20) 40.5 G/L; days, (range) CSP = 12 (9–27) BEAM = 12 (9–25) BuCyE = 9(8–17) BuEM = 10 (8–31) Platelet recovery time BM = 24 (10–250) CBV = 14 (9–58) BEAM = 13.5 (7–31) BEAM = 11 (3–25) 420 G/L, days, (range) CSP = 17 (10–160) BEAM = 12 (8–56) BuCyE = 11 (5–38) BuEM = 11 (6–150) Toxicity-related mortality, n (%) 5.4% CBV = 25% BEAM = 4.1% BEAM = 3.44% BEAM = 7% BuCyE = 9.1% BuEM = 0% P = 0.02 P = NS P = NS Median PFS/DFS DFS = 76% Not specified BEAM = 16.1 Mo BEAM = 63.2% 3 Years BuCyE = 11.3 Mo BuEM = 65.6% EFS; P = NS PFS Median OS 68% Not specified BEAM = 30.6 Mo BEAM = 76.7% 3 Years BuCyE = 22.6 Mo BuEM = 78.8% P = NS P = NS Abbreviations: BEAM = BCNU+etoposide+aracytine+melphalan; BM = bone marrow; BuCyE = busulfan+cyclophosphamide+etoposide; BuEM = busulfan +etoposide+melphalan; CBV = cyclophosphamide+BCNU+VP16 (etoposide); DFS = disease-free survival; EFS = event-free survival; Mo = month; NS = not significant; OS = overall survival; PMN = polymorphonuclear; PSC = peripheral stem cell. Sinusoidal obstruction syndrome was reported in the studies by Kim et al.82 (two for BEAM and one for BuCyE) and Sakellari et al.88 (in one case after BEAM). In the study by Sakellari et al.,88 sepsis was significantly higher following BuEM than BEAM (P = 0.006). members were responsible for reviewing and synthesizing all the Toxicities data and writing the manuscript. The final document was sent to In a 2006 study published by a Spanish team, the toxicities of CBV readers who provided their opinion on the text before submission and BEAM were retrospectively compared in 113 patients.13 The for review by the scientific boards of the Lymphoma Study results showed comparable hematological toxicities between the Association and the French Society of Bone Marrow Transplanta- two conditioning regimens. However, higher non-hematological tion and Cellular Therapy. toxicities, including mucositis (63% versus 34%, P = 0.004), renal failure (12% versus 0%, P = 0.02), sinusoidal obstruction syndrome (7% versus 0%, P = 0.04) and pulmonary toxicities, were noted in OVERVIEW OF CARMUSTINE-BASED CONDITIONING REGIMENS the CBV group. Treatment-related mortality (TRM) was primarily infection-related, with rates of 5% for BEAM and 24% for CBV Several types of BCNU-based conditioning regimens have been (P = 0.02). The excessive toxicity of CBV was associated with the developed (Supplementary Table 1). Unfortunately, none of these higher total BCNU dose in the CBV regimen (800 mg/m2) versus regimens has been compared in prospective or randomized the BEAM regimen (300 mg/m2). The total etoposide dose was studies. Each regimen involves a combination of two to four comparable between the two regimens (750 versus 800 mg/m2). drugs, including alkylating agents. The CBV (cyclophosphamide Another more recent analysis evaluated 4917 patients (Cy), BCNU and etoposide), BEAM (BCNU, etoposide, aracytine and (NHL = 3905, HL = 1012) who received auto-HSCT after high-dose melphalan) and BEAC regimens (BCNU, etoposide, aracytine and therapy with BEAM (n = 1730), CBV (n = 1853; CBVlow Cy) are the most frequently used.
Recommended publications
  • Australian Public Assessment Report for Aminolevulinic Acid Hcl
    Australian Public Assessment Report for Aminolevulinic acid HCl Proprietary Product Name: Gliolan Sponsor: Specialised Therapeutics Australia Pty Ltd March 2014 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health, and is responsible for regulating medicines and medical devices. · The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website < http://www.tga.gov.au>. About AusPARs · An Australian Public Assessment Record (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. · AusPARs are prepared and published by the TGA. · An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations, and extensions of indications. · An AusPAR is a static document, in that it will provide information that relates to a submission at a particular point in time. · A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]
  • NOV 1 72010 1.0 Submitter
    510(k) SUMMARY NOV 1 72010 1.0 Submitter Name Shen Wei (USA) Inc. Street Address 33278 Central Ave., Suite 102 Union City, CA. 94587 Phone No. (510)429-8692 Fax No. (510)487-5347 Date of Summary Prepared: 08/12/10 Prepared by: Albert Li 2.0 Name of the device: Glove Proprietary or Trade Name: Blue and Red with Pearlescent® Pigment, Powder Free Nitrile Examination Gloves with Aloe Vera, Tested for use with Chemotherapy Drugs Common Name: Exam gloves Classification Name: Patient examination glove, Specialty Chemotherapy'(per 21 CFR 880.6250 product code LZC) Classification Information: Class I Nitrile patient examination glove 8OLZC, powder-free and meeting all the requirements of ASTM D 631 9-O0a-05 and is tested with chemotherapy drugs according to ASTM D 6978-05. 3.0 Identification of the Legally Marketed Device: Blue and Red with Pearlescent® Pigment, Powder Free Nitrile Examination Gloves with Aloe Vera Regulatory Class I Nitrile patient examination Product code: 8OLZA 5 10(k): K092411 4.0 Description of the Device: Blue and Red with Pearlescent® Pigment, Powder Free Nitrite Examination Gloves with Aloe Vera, Tested for use with Chemotherapy Drugs meets all the requirements of ASTM D 6978-05, ASTM D63 19-00a(2005) and FDA 21 CFT 880.6250. 5.0 Intended Use of Device: Product: Red with Pearlescent® Pigment, Powder Free Nitrile Examination Gloves with Aloe Vera, Tested for use with Chemotherapy Drugs A disposable device intended for medical purpose that is worn on the examiner's hand to prevent contamination between patient and examiner. This device is single use only.
    [Show full text]
  • New Brunswick Prescription Drug Program Formulary
    NEW BRUNSWICK PRESCRIPTION DRUG PROGRAM FORMULARY Copyright - 2003 The Queen In the right of The Province of New Brunswick as represented by The Honourable Elvy Robichaud Minister of Health and Wellness ADMINISTERED BY ATLANTIC BLUE CROSS CARE ON BEHALF OF THE GOVERNMENT OF NEW BRUNSWICK TABLE OF CONTENTS Page Introduction to the New Brunswick Prescription Drug Program Formulary I The New Brunswick Prescription Drug Program I New Brunswick Prescription Drug Program Plans II - III Exclusions IV - V Extemporaneous Preparations and Placebos VI Benefit Review Process VII Product Deletion VII Submission Requirements VIII Legend IX Comment Sheet X Pharmacologic - Therapeutic Classification of Drugs 4:00 Antihistamines 1 8:00 Anti-Infective Agents 3 10:00 Antineoplastic Agents 28 12:00 Autonomic Drugs 33 20:00 Blood Formation and Coagulation 43 24:00 Cardiovascular Agents 49 28:00 Central Nervous System Agent 76 40:00 Electrolytic, Caloric and Water Balance 128 48:00 Antitussives, Expectorants & Mucolytic Agents 133 52:00 Eye, Ear, Nose and Throat (EENT) Preparations 135 56:00 Gastrointestinal Drugs 149 60:00 Gold Compounds 159 64:00 Heavy Metal Antagonists 160 68:00 Hormones and Synthetic Substitutes 161 80:00 Serums, Toxoids, and Vaccines 179 84:00 Skin and Mucous Membrane Agents 180 86:00 Smooth Muscle Relaxants 198 88:00 Vitamins 201 92:00 Unclassified Therapeutic Agents 205 TABLE OF CONTENTS Page Appendices I-A Abbreviations of Dosage Forms A-1 - A-3 I-B Abbreviations of Routes A-4 - A-5 I-C Abbreviations of Units A-6 - A-7 II Abbreviations of Manufacturers' Names A-8 - A-9 III Extemporaneous Preparations A-10 IV Special Authorization A-11 IV Special Authorization Drug Criteria A-12 NEW BRUNSWICK PRESCRIPTION DRUG PROGRAM FORMULARY Introduction The New Brunswick Prescription Drug Program Formulary is a listing of all drugs and drug products which have been determined by the Minister of Health and Wellness to be entitled services.
    [Show full text]
  • Biomarkers in Glioblastoma HIVE
    Development of Integrated Imaging Techniques for Investigating Biomarkers in Glioblastoma HIVE HEISOOG KIM B.S., Nuclear Engineering (2004) Seoul National University M.D. Certificate, Graduate Education in Medical Sciences (2011) Harvard-MIT Division of Health Sciences and Technology SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2011 @ 2011 Massachusetts Institute of Technology All rights reserved Signature of Author: Heisoog Kim Department of Nuclear Science and Engineering A.. ust 8"', 2011 Certified by Bruce R. n, Professor of Health Science and Technology/Nuclear Engineering All/7 Thesis Supervisor Certified by A. Gregory Sorensen, Professor at Harvard Medical School, Thesis Supervisor Reviewed by Elfar Adalsteinsson, Associate professor of Health Science and Technology, Thesis Reader Accepted by Mujid S. Kazimi, TEPCO P fess f Nuclear Engineering Chair, Department Committee on Graduate Students Table of Contents Abstract 5 Acknowledgements 7 List of Figures 9 List of Tables 11 1. Introduction 15 1.1. Significance of Developing Biomarkers 15 2. Cancer Physiology 19 2.1. Glioblastoma 19 2.2. Vascular Structure and Function in Brain Tumors 20 2.3. Angiogenesis in Tumor 22 2.4. Oxidative Metabolism in Tumors 23 2.5. Hypoxia in Tumors 26 3. Treatment Philosophies 33 3.1. Surgery 33 3.2. Radiotherapy 33 3.3. Chemotherapy 35 3.4. Antiangiogenic Therapy 37 4. Basics of Advanced Imaging Techniques 41 4.1. Magnetic Resonance Imaging Techniques 41 Simultaneous Blood Oxygenation Level Dependent (BOLD) and Arterial Spin Labeling (ASL) Imaging 42 Proton Magnetic Resonance Spectroscopy ('H MRS) Imaging 44 4.2.
    [Show full text]
  • Primary Central Nervous System Lymphoma: Consolidation Strategies
    12 Review Article Page 1 of 12 Primary central nervous system lymphoma: consolidation strategies Carole Soussain1,2, Andrés J. M. Ferreri3 1Division of Hematology, Institut Curie, Site Saint-Cloud, Saint-Cloud, France; 2INSERM U932, Institut Curie, PSL Research University, Paris, France; 3Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Carole Soussain. Institut Curie, 35 rue Dailly, 92210 Saint-Cloud, France. Email: [email protected]. Abstract: To eliminate residual malignant cells and prevent relapse, consolidation treatment remains an essential part of the first-line treatment of patients with primary central nervous system lymphoma. Conventional whole-brain radiotherapy (WBRT) delivering 36–40 Gy was the first and most used consolidation strategy for decades. It is being abandoned because of the overt risk of neurotoxicity while other consolidation strategies have emerged. Reduced-dose WBRT is effective for reducing the risk of relapse in patients with complete response (CR) after induction chemotherapy compared to patients who did not receive consolidation treatment, with an apparent reduced risk of neurotoxicity, which needs to be confirmed in patients over 60 years of age. Preliminary results showed the feasibility of stereotaxic radiotherapy as an alternative to WBRT. Nonmyeloablative chemotherapy, consisting of high doses of etoposide and cytarabine, has shown encouraging therapeutic results in a phase II study, with a high risk of hematologic and infectious toxicity.
    [Show full text]
  • Wear the Battle Gear That Protects Against 52 Chemotherapy Drugs!
    YOU’RE FIGHTING CANCER. Wear the Battle Gear That Protects Against 52 Chemotherapy Drugs! PURPLE NITRILE-XTRA* Gloves and HALYARD* Procedure Gowns for Chemotherapy Use have been tested It’s 52 vs. You. for resistance to 52 chemotherapy drugs.† Arsenic Trioxide (1 mg/ml) Cyclophosphamide (20 mg/ml) Fludarabine (25 mg/ml) Mitomycin (0.5 mg/ml) Temsirolimus (25 mg/ml) Azacitidine (Vidaza) (25 mg/ml) Cytarabine HCl (100 mg/ml) Fluorouracil (50 mg/ml) Mitoxantrone (2 mg/ml) Trastuzumab (21 mg/ml) Bendamustine (5 mg/ml) Cytovene (10 mg/ml) Fulvestrant (50 mg/ml) Oxaliplatin (2 mg/ml) ThioTEPA (10 mg/ml) Bleomycin Sulfate (15 mg/ml) Dacarbazine (10 mg/ml) Gemcitabine (38 mg/ml) Paclitaxel (6 mg/ml) Topotecan HCl (1 mg/ml) Bortezomib (Velcade) (1 mg/ml) Daunorubicin HCl (5 mg/ml) Idarubicin (1 mg/ml) Paraplatin (10 mg/ml) Triclosan (1 mg/ml) Busulfan (6 mg/ml) Decitabine (5 mg/ml) Ifosfamide (50 mg/ml) Pemetrexed (25 mg/ml) Trisenox (0.1 mg/ml) Carboplatin (10 mg/ml) Docetaxel (10 mg/ml) Irinotecan (20 mg/ml) Pertuzumab (30 mg/ml) Vincrinstine Sulfate (1 mg/ml) Carfilzomib (2 mg/ml) Doxorubicin HCl (2 mg/ml) Mechlorethamine HCl (1 mg/ml) Raltitrexed (0.5 mg/ml) Vinblastine (1 mg/ml) Carmustine (3.3 mg/ml)† Ellence (2 mg/ml) Melphalan (5 mg/ml) Retrovir (10 mg/ml) Vinorelbine (10 mg/ml) Cetuximab (Erbitux) (2 mg/ml) Eribulin Mesylate (0.5 mg/ml) Methotrexate (25 mg/ml) Rituximab (10 mg/ml) Zoledronic Acid (0.8 mg/ml) Cisplatin (1 mg/ml) Etoposide (20 mg/ml) † Testing measured no breakthrough at the Standard Breakthrough Rate of 0.1ug/cm2/minute, up to 240 minutes for gloves and 480 minutes for gowns, except for carmustine.
    [Show full text]
  • Kepivance, INN-Palifermin
    SCIENTIFIC DISCUSSION 1. Introduction Oral mucositis Oral mucositis is a significant problem in patients receiving chemotherapy or radiotherapy. Estimates of oral mucositis incidence among cancer therapy patients range from 40% of those receiving standard chemotherapy to 76% of bone marrow transplant patients [1]. Virtually, all patients who receive radiotherapy to the head and neck area develop oral complications. Cancer therapy-induced mucositis occurs when radiation or chemotherapy destroys rapidly proliferating cells such as those lining the mouth, throat, and gastrointestinal tract. In the setting of high-dose myelotoxic therapy, mucositis is a frequent, extremely painful and debilitating complication [2]. Mucositis can arise along the entire gastrointestinal tract and can be associated with significant morbidity, including: pain, specifically in the oral cavity, pharynx, and esophagus (esophagitis), requiring opioid analgesia; difficulty or inability to swallow, because of ulcerations in the oral cavity, pharynx, and esophagus, leading to a compromised nutritional status necessitating parenteral feeding and hydration; infection due to the breakdown of the epithelial barrier and exacerbated by accompanying neutropenia (when present); difficulty or inability to speak; nausea, vomiting, and diarrhoea, which may require intravenous (i.v.) rehydration and may predispose the patient to severe electrolyte and acid-base disorders; gastrointestinal bleeding due to ulceration at any site of the gastrointestinal tract, authorisedbut typically in the esophagus or stomach. These manifestations diminish the quality of life of patients with cancer and can interfere with management of the primary disease, e.g., requiring dose reductions or treatment delays [3]. The effect of mucositis on length of hospital stay, admissions for fluid support or treatment of infection, and alteration of optimum anticancer treatment have significant clinical and economic consequences [4].
    [Show full text]
  • The Effects of the Nanosphere Carrier for the Combined Carmustine-Busulfan Trastuzumab in Human Breast Cancer Tissue Culture
    Sahib et al (2019): Nanosphere carrier in human breast cancer November 2019 Vol. 22 (7) The effects of the nanosphere carrier for the combined carmustine-busulfan trastuzumab in human breast cancer tissue culture Zena Hasan Sahib 1 , Sarmad Nory Gany Al-Dujaili 1 , Hussein Abdulkadhim 1 , Rana A. Ghaleb 2 1 Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa 2 Department of Anatomy and Histology, College of medicine, University of Babylon Corresponding author email: [email protected] Abstract Cancer of the breast is from the highest cancer type’s incidence. Cancer in general represents a high therapeutic challenge. Considerable adverse effects and cytotoxicity of highly potent drugs for healthy tissue require the development of novel drug delivery systems to improve pharmacokinetics and result in selective distribution of the loaded agent. Targeted therapy is a novel maneuver to achieve proper selectivity index. And as the main goal of nanocarriers is to target specific sites and improve the circulation time of the drug which is entrapped, encapsulate or conjugate in the carrier system so we chose nanoliposome as a drug carrier. Liposomes improved a potent drug targeting successfully in the last decade, but nanoliposomes offer more surface area and they have more solubility, improve controlled release, enhance bioavailability, and permit precision targeting of the material that is encapsulated to a greater extent. The Aims and objectives of the study is the formulation of HER2 Ab directed nanosphere carrier for a combined Carmustine-busulfan and trastuzumab (LCBT), then Assessing antineoplastic efficacy of (LCBT) in lung carcinoma cell line. A dose-dependent cellular growth inhibition on all three cell lines (P-value < 0.001) was seen.
    [Show full text]
  • High-Dose Carmustine, Etoposide, and Cyclophosphamide Followed by Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma
    Biology of Blood and Marrow Transplantation 12:703-711 (2006) ᮊ 2006 American Society for Blood and Marrow Transplantation 1083-8791/06/1207-0002$32.00/0 doi:10.1016/j.bbmt.2006.02.009 High-Dose Carmustine, Etoposide, and Cyclophosphamide Followed by Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma Lisa Y. Law,1 Sandra J. Horning,2 Ruby M. Wong,3 Laura J. Johnston,1 Ginna G. Laport,1 Robert Lowsky,1 Judith A. Shizuru,1 Karl G. Blume,1 Robert S. Negrin,1 Keith E. Stockerl-Goldstein1 1Division of Blood and Marrow Transplantation, 2Division of Oncology, and 3Department of Health, Research and Policy, Stanford University Medical Center, Stanford, California Correspondence and reprint requests: Keith E. Stockerl-Goldstein, Division of Blood and Marrow Transplantation, 300 Pasteur Drive, H3249, Stanford University Medical Center, Stanford, CA 94305 (e-mail: [email protected]). Received August 28, 2005; accepted February 27, 2006 ABSTRACT Allogeneic hematopoietic cell transplantation (HCT) has been shown to be curative in a group of patients with aggressive non-Hodgkin lymphoma (NHL). A previous study has demonstrated equivalent outcomes with a conditioning regimen based on total body irradiation and another not based on total body irradiation with preparative therapy using cyclophosphamide, carmustine, and etoposide (CBV) in autologous HCT. We investigated the safety and efficacy of using CBV in an allogeneic setting. Patients were required to have relapsed or be at high risk for subsequent relapse of NHL. All patients had a fully HLA-matched sibling donor. Patients received carmustine (15 mg/kg), etoposide (60 mg/kg), and cyclophosphamide (100 mg/kg) on days ؊6, ؊4, and ؊2, respectively, followed by allogeneic HCT.
    [Show full text]
  • Bicnu (Carmustine)
    Prior Authorization DRUG Guidelines Bicnu (carmustine) Effective Date: 10/22/13 Date Developed: 9/3/13 by Albert Reeves MD Last Approval Date: 1/26/16, 1/24/17, 1/23/18, 1/22/19, 2/18/20, 8/3/21 Pharmacologic Category : Antineoplastic Agent;, Alkylating Agent Preauthorization Criteria: Injection: Palliative eatment: brain tumors (glioblastoma, brainstem glioma, medulloblastoma, astrocytoma, ependymoma, and metastatic brain tumors), multiple myeloma, Hodgkin's lymphoma (relapsed or refractory), non-Hodgkin's lymphomas (relapsed or refractory) Wafer (implant): Adjunct to surgery in patients with recurrent glioblastoma multiforme; adjunct to surgery and radiation in patients with newly-diagnosed high-grade malignant glioma Dosing: Adult ; Brain tumors, Hodgkin’s lymphoma, multiple myeloma, non-Hodgkin’s lymphoma (per manufacturer labeling): I.V.: 150-200 mg/m2 every 6 weeks or 75-100 mg/m2/day for 2 days every 6 weeks Glioblastoma multiforme (recurrent), newly-diagnosed high-grade malignant glioma: Implantation (wafer): 8 wafers placed in the resection cavity (total dose 61.6 mg); should the size and shape not accommodate 8 wafers, the maximum number of wafers allowed (up to 8) should be placed Indication-specific dosing: Brain tumor, primary (unlabeled doses): I.V.: 80 mg/m2/day for 3 days every 8 weeks for 6 cycles (Brandes, 2004) 200 mg/m2 every 8 weeks [maximum cumulative dose: 1500 mg/m2] (Selker, 2002) Hodgkin’s lymphoma, relapsed or refractory (unlabeled dose): I.V.: Mini-BEAM regimen: 60 mg/m2 day 1 every 4-6 weeks (in combination
    [Show full text]
  • Phase I Clinical and Pharmacological Study of O6-Benzylguanine Followed by Carmustine in Patients with Advanced Cancer1
    Vol. 6, 3025–3031, August 2000 Clinical Cancer Research 3025 Phase I Clinical and Pharmacological Study of O6-Benzylguanine Followed by Carmustine in Patients with Advanced Cancer1 Richard L. Schilsky,2 M. Eileen Dolan,3 dose-limiting toxicity of BG combined with carmustine and Donna Bertucci, Reginald B. Ewesuedo, was cumulative in some patients. The neutrophil nadir oc- Nicholas J. Vogelzang, Sridhar Mani, curred at a median of day 27, with complete recovery in most patients by day 43. Nonhematological toxicity included Lynette R. Wilson, and Mark J. Ratain fatigue, anorexia, increased bilirubin, and transaminase el- Department of Medicine, Section of Hematology-Oncology, Cancer evation. Recommended doses for Phase II testing are 120 Research Center and Committee on Clinical Pharmacology, mg/m2 BG given with carmustine at 40 mg/m2. BG rapidly University of Chicago, Chicago, Illinois 60637 disappeared from plasma and was converted to a major metabolite, O6-benzyl-8-oxoguanine, which has a 2.4-fold ABSTRACT higher maximal concentration and 20-fold higher area un- O6-benzylguanine (BG) is a potent inactivator of the der the concentration versus time curve than BG. AGT DNA repair protein O6-alkylguanine-DNA alkyltransferase activity in peripheral blood mononuclear cells was rapidly (AGT) that enhances sensitivity to nitrosoureas in tumor cell and completely suppressed at all of the BG doses. The rate lines and tumor-bearing animals. The major objectives of of AGT regeneration was more rapid for patients treated this study were to define the optimal modulatory dose and with the lowest dose of BG but was similar for BG doses 2 associated toxicities of benzylguanine administered alone ranging from 20–120 mg/m .
    [Show full text]
  • Appendix C Medication Tables
    Appendix C Medication Tables Note: The medication tables are not meant to be inclusive lists of all available therapeutic agents. Approved medication tables will be updated regularly. Discrepancies must be reported. See Resource Section of this manual for additional contact information. Release Notes: Aspirin Table Version 1.0 Table 1.1 Aspirin and Aspirin-Containing Medications Acetylsalicylic Acid Acuprin 81 Alka-Seltzer Alka-Seltzer Morning Relief Anacin Arthritis Foundation Aspirin Arthritis Pain Ascriptin Arthritis Pain Formula ASA ASA Baby ASA Baby Chewable ASA Baby Coated ASA Bayer ASA Bayer Children's ASA Buffered ASA Children's ASA EC ASA Enteric Coated ASA/Maalox Ascriptin Aspergum Aspir-10 Aspir-Low Aspir-Lox Aspir-Mox Aspir-Trin Aspirbuf Aspircaf Aspirin Aspirin Baby Aspirin Bayer Aspirin Bayer Children's Aspirin Buffered Aspirin Child Aspirin Child Chewable Aspirin Children's Aspirin EC Aspirin Enteric Coated Specifications Manual for National Appendix C-1 Hospital Quality Measures Table 1.1 Aspirin and Aspirin-Containing Medications (continued) Aspirin Litecoat Aspirin Lo-Dose Aspirin Low Strength Aspirin Tri-Buffered Aspirin, Extended Release Aspirin/butalbital/caffeine Aspirin/caffeine Aspirin/pravachol Aspirin/pravastatin Aspirtab Bayer Aspirin Bayer Aspirin PM Extra Strength Bayer Children’s Bayer EC Bayer Enteric Coated Bayer Low Strength Bayer Plus Buffered ASA Buffered Aspirin Buffered Baby ASA Bufferin Bufferin Arthritis Strength Bufferin Extra Strength Buffex Cama Arthritis Reliever Child’s Aspirin Coated Aspirin
    [Show full text]