arXiv:1306.6697v1 [math.NT] 28 Jun 2013 ihteuulcneto bu replacing about convention usual the with h lsia oyoaihi function polylogarithmic classical The Introduction 1 nteseilcase, special the In oyoil eew eoehge-re enul oyoil as Bernoulli higher-order denote we Here . n[] oyBroliplnmasaedfie ytegnrtn funct generating the by defined are polynomials poly-Bernoulli [5], In si elkon h enul oyoil forder of polynomials Bernoulli the known, well is As eeaigfnto obe to function generating oyBroliplnmasaiigfo umbral from arising polynomials Poly-Bernoulli dniisfrtepl-enul ubr n polynomials and calculus. int numbers umbral and from new poly-Bernoulli derived and the formula recurrence for some identities give we paper, this In a a i,TeynKmadSn-u Lee Sang-Hun and Kim Taekyun Kim, San Dae Li k 1 (1 − −  e − r e e Li t t 1, = − − t t s ) ( e 1 x xt = )  B r n ( = r e ) ( X xt k e ∞ x =1 B = ) = ( calculus k x ) k Abstract ( X n k x s ∞ =0 B ) s , t by n = B 1 ( Li x n ( X r n ∈ scle the called is ) ∞ ) s =0 ( ( Z x x B B ) , are ) n t n ( ( n k k ! se[3 (see ) ) , ( ( x x se[7 (see ) )  n t n n ! , , by 5]) n se[3 (see t riayBernoulli ordinary -th , r . 9]) B r endb the by defined are n ( . k ) ( , x hc are which 5]) ). eresting B , n ( r ) o obe to ion oavoid to (2) (3) (1) conflict of notations. (k) (k) If x = 0, then Bn (0) = Bn is called the n-th poly-. From (2), we note that

n n n n B(k)(x)= B(k) xl = B(k)xn−l. (4) n l n−l l l l l X=0   X=0   Let F be the set of all formal power series in the variable t over C as follows:

∞ tk F = f(t)= ak ak ∈ C , (5) ( k! ) k=0 X P P∗ and let = C[x] and denote the of all linear functionals on P. hL|p(x)i denotes the acition of linear functional L on the polynomial p(x), and it is well known that the vector space oprations on P∗ are defined by hL + M|p(x)i = hL|p(x)i + hM|p(x)i, hcL|p(x)i = c hL|p(x)i, where c is a complex constant (see [6, 9]). n For f(t) ∈F, let f(t) x = an. Then, by (5), we easily get

k n t x = n!δn,k, (n, k ≥ 0), (see [1, 4, 6, 9, 10]), (6) where δn,k is the Kronecker’s symbol. ∞ k tk Let us assume that fL(t) = k=0 L x k! . Then, by (6), we see that f (t) xn = L xn . That is, f (t)= L. Additionally, the map L 7−→ f (t) is L L L a vector space isomorphism fromPP∗ onto F. Henceforth, F denotes both the algebra of the formal power series in t and the vector space of all linear func- tionals on P, and so an element f(t) of F will be thought as a formal power series and a linear functional. F is called the umbral algebra. The umbral calculus is the study of umbral algebra. The order O (f(t)) of the power series f(t) =6 0 is the smallest integer for which ak does not vanish. If O(f(t)) = 0, then f(t) is called an invertible series. If O(f(t)) = 1, then f(t) is called a delta series. For f(t),g(t) ∈F, we have

hf(t)g(t)|p(x)i = hf(t)|g(t)p(x)i = hg(t)|f(t)p(x)i . (7)

Let f(t) ∈F and p(x) ∈ P. Then we have

∞ tk ∞ xk f(t)= f(t) xk , p(x)= tk p(x) , (see [6, 9]). (8) k! k! k=0 k=0 X X

2 From (8), we can easily derive ∞ dkp(x) tl p(x) p(k)(x)= = xl−k. (9) dxk (l − k)! l=k X Thus, by (8) and (9), we get p(k)(0) = tk p(x) = 1 p(k)(x) . (10) Hence, from (10), we have

dkp(x) tkp(x)= p(k)(x)= , (see [1, 6, 9]). (11) dxk It is easy to show that eytp(x)= p(x + y), eyt p(x) = p(y). (12)

Let O(f(t)) = 1 and O(g(t)) = 0. Then there exists a unique sequence sn(x) k of polynomials such that g(t)f(t) sn(x) = n!δn,k, for n, k ≥ 0. The se- quence s (x) is called a Sheffer sequence for (g(t), f(t)) which is denoted by n sn(x) ∼ (g(t), f(t)). The Sheffer sequence sn(x) for(g(t), t) is called the for g(t). For p(x) ∈ P, f(t) ∈F, we have

′ hf(t)|xp(x)i = h∂tf(t)|p(x)i = hf (t)|p(x)i , (see [9, 10]). (13)

Let sn(x) ∼ (g(t), f(t)). Then the following equations are known:

∞ ∞ k h(t) sk(x) g(t)f(t) p(x) h(t)= g(t)f(t)k, p(x)= s (x), (14) k! k! k k=0 k=0 X X where h(t) ∈F, p(x) ∈ P, ∞ 1 tk eyf¯(t) = s (y) , for all y ∈ C, (15) g f¯ t k k! ( ) k X=0 where f¯(t) is the compositional  inverse for f(t) with f¯(f(t)) = t, and

f(t)sn(x)= nsn−1(x). (16) As is well known, the Stirling numbers of the second kind are also defined by the generating function to be

∞ l ∞ m t m! et − 1 = m! S (l, m) = S (l + m, m)tl+m. (17) 2 l! (l + m)! 2 l=m l=0  X X 3 Let sn(x) ∼ (g(t), t). Then the Appell identity is given by

n n n n s (x + y)= s (y)xn−k = s (y)xk, (see [6, 9]), (18) n k k k n−k k k X=0   X=0   and g′(t) s (x)= x − s (x), (see [6.9]). (19) n+1 g(t) n   For sn(x) ∼ (g(t), f(t)), rn(x) ∼ (h(t),l(t)), we have

n

sn(x)= rm(x)cn,m, (20) m=0 X where 1 h f¯(t) m c l f¯ t xn , . n,m = ¯ ( ) (see [9]) (21) m! * g f(t) +   The equations (20) and (21) are important in deriving our main results of this paper. In this paper, we give some recurrence formula and new and interesting iden- tities for the poly-Bernoulli numbers and polynomials which are derive from umbral calculus.

2 Poly-Bernoulli numbers and polynomials

1−e−t g t −t Let k( )= Lik(1−e ) . Then, by (2) and (15), we get

(k) Bn (x) ∼ (gk(t), t) . (22)

(k) That is, poly-Bernoulli polynomial Bn (x) is an Appell sequence. By (1), we easily get

d 1 d Li (x)= Li (x), tB(k)(x)= B(k)(x)= nB(k) (x). (23) dx k x k−1 n dx n n−1 From (2) and (15), we have

−t (k) 1 n Lik (1 − e ) n Bn (x)= x = −t x . (24) gk(t) 1 − e

4 Let k ∈ Z and n ≥ 0. Then we have

∞ Li (1 − e−t) (1 − e−t)m−1 B(k)(x)= k xn = xn (25) n 1 − e−t mk m=1 ∞ X ∞ m 1 m 1 m = 1 − e−t xn = (−1)j e−jtxn (m + 1)k (m + 1)k j m=0 m=0 j=0   Xn m  X X 1 m = (−1)j (x − j)n. (m + 1)k j m=0 j=0 X X   By (17) and (25), we get

n ∞ 1 m! B(k)(x)= (−1)a S (a + m, m)ta+mxn (26) n (m + 1)k (a + m)! 2 m=0 a=0 Xn Xn−m 1 m! = (−1)a S (a + m, m)(n) xn−a−m (m + 1)k (a + m)! 2 a+m m=0 a=0 Xn n−l X (−1)n−m−l n = m!S (n − l, m) xl, (m + 1)k l 2 l (m=0 ) X=0 X   where (a)n = a(a − 1)(a − 2) ··· (a − n + 1). Now, we use the well-known transfer formula for Appell sequences (see equation (19)). By (19) and (22), we get

g′ (t) B(k) (x)= x − k B(k)(x), (27) n+1 g (t) n  k  where ′ gk(t) ′ −t −t ′ = (log gk(t)) = log 1 − e − log Lik 1 − e (28) gk(t) −t −t e Lik−1 (1 − e  )  = −t 1 − −t 1 − e Lik (1 − e )  −t  −t 1 Li (1 − e ) − Li − (1 − e ) = k k 1 . et − 1 Li (1 − e−t)  k 

5 From (27) and (28), we have

′ (k) (k) gk(t) (k) Bn+1(x)= xBn (x) − Bn (x) (29) gk(t) −t −t t Li (1 − e ) − Li − (1 − e ) = xB(k)(x) − k k 1 xn. n et − 1 t (1 − e−t)     Here, we note that

−t −t ∞ Li (1 − e ) − Li − (1 − e ) 1 1 m−1 k k 1 = − 1 − e−t (30) 1 − e−t mk mk−1 m=2 X   1 1  = − t + ··· 2k 2k−1   is a delta series. For any delta series f(t), we observe that

f(t) xn+1 xn = f(t) . (31) t n +1 By (29), (30) and (31), we get

t 1 Li (1 − e−t) − Li (1 − e−t) B(k) (x)= xB(k)(x) − k k−1 xn+1 n+1 n et − 1 n +1 1 − e−t  ∞   1 B = xB(k)(x) − l tl B(k) (x) − B(k−1)(x) n n +1 l! n+1 n+1 l=0 n o Xn 1 +1 n +1 = xB(k)(x) − B B(k) (x) − B(k−1) (x) . (32) n n +1 l l n+1−l n+1−l l X=0   n o Therefore, by (32), we obtain the following theorem.

Theorem 1. For k ∈ Z, n ≥ 0, we have

n 1 +1 n +1 B(k) (x)= xB(k)(x) − B B(k) (x) − B(k−1) (x) , n+1 n n +1 l l n+1−l n+1−l l X=0   n o where Bn is the n-th ordinary Bernoulli number.

6 It is easy to show that

n n n n txB(k)(x)= t B(k) xl+1 = B(k) (l + 1)xl (33) n l n−l l n−l l=0   l=0   Xn− X n 1 n − 1 n = nx B(k) xl + B(k) xn l n−1−l l n−l l l X=0   X=0   (k) (k) = nxBn−1(x)+ Bn (x).

Applying to t on both sides of Theorem 1, by (33), we get

n n (n +1)B(k)(x)= nxB(k) (x)+ B(k)(x) − B B(k)(x) − B(k−1)(x) . n n−1 n l n−l l l l=0   n o X (34) Therefore, by (34), we obtain the following corollary.

Corollary 2. For k ∈ Z and n ≥ 1, we have

n−2 (k) 1 (k) n (k) (n + 1)B (x) − n x + B (x)+ B − B (x) n 2 n−1 l n l l l   X=0   n n = B B(k−1)(x). l n−l l l X=0   From (2) and (6), we note that

−t −t (k) Lik (1 − e ) yt n Lik (1 − e ) yt n−1 Bn (y)= −t e x = −t e xx (35) * 1 − e + * 1 − e +

−t Lik (1 − e ) yt n−1 = ∂t −t e x * 1 − e +   −t −t Lik (1 − e ) yt n−1 Lik (1 − e ) yt n−1 = ∂t −t e x + y −t e x * 1 − e + * 1 − e +   −t −t Lik−1 (1 − e ) − Lik (1 − e ) (y−1)t n−1 (k ) = 2 e x + yBn− 1(y). * (1 − e−t) +

7 Now, we observe that −t −t ∞ −t m −t m Li − (1 − e ) − Li (1 − e ) 1 (1 − e ) (1 − e ) k 1 k = − (1 − e−t)2 (1 − e−t)2 mk−1 mk m=1   X (36) ∞ 1 1 m− = − 1 − e−t 2 mk−1 mk m=2   X∞  1 1 m = − 1 − e−t . (m + 2)k−1 (m + 2)k m=0   X  Thus, by (36), we get

−t −t Lik−1 (1 − e ) − Lik (1 − e ) (y−1)t n−1 2 e x (37) * (1 − e−t) +

∞ 1 1 −t m (y−1)t n−1 = − 1 − e e x (m + 2)k−1 (m + 2)k m=0   Xn−1  1 1 m = − 1 − e−t (x + y − 1)n−1 (m + 2)k−1 (m + 2)k m=0   Xn−1 n−1  1 1 n − 1 m = − (y − 1)n−1−a 1 − e−t xa . (m + 2)k−1 (m + 2)k a m=0   a=0   X X  From (6) and (7), we have −t m a a+m 1 − e x =(−1) m!S2(a, m). (38) From (37) and (38), wehave 

−t −t Lik−1 (1 − e ) − Lik−1 (1 − e ) (y−1)t n−1 2 e x (39) * (1 − e−t) +

n−1 n−1 n − 1 1 1 = (−1)a+m m! − a (m + 2)k−1 (m + 2)k m=0 a=0     X X n−1−a × S2(a, m)(y − 1) n− n− 1 1 n − 1 1 1 = (−1)n−1−l+m m! − l (m + 2)k−1 (m + 2)k m=0 l=0     X X l × S2(n − 1 − l, m)(y − 1) . Therefore, by (35) and (39), we obtain the following theorem.

8 Theorem 3. For k ∈ Z and n ≥ 1, we have

n− 1 n − 1 B(k)(x)= xB(k) (x)+ (−1)n−1−l n n−1 l l=0   n− X 1 (m + 1)! × (−1)m S (n − 1 − l, m) (x − 1)l. (m + 2)k 2 (m=0 ) X −t n+1 Now, we try to compute Lik (1 − e ) x in two ways. On the one hand,

−t Lik (1 − e ) Li e−t xn+1 e−t xn+1 k 1 − = 1 − −t (40) * 1 − e +   −t Lik (1 − e ) −t n+1 = −t 1 − e x * 1 − e +

−t  Lik (1 − e ) n+1 n+1 = −t x − (x − 1) * 1 − e +

n −t n +1 n−m Lik (1 − e ) m = (− 1) 1 −t x m * 1 − e + m=0   Xn n +1 n−m (k) = (−1) Bm . m m=0 X   On the other hand,

t −t n+1 −s ′ n+1 Lik 1 − e x = Lik 1 − e ds x (41) * 0 + Z t  −s  Lik −1 (1 − e ) e−s ds xn+1 = −s * 0 1 − e + Z t ∞ a ∞ (k−1) (−s) B m = sm ds xn+1 a! m! * 0 a=0 ! m=0 ! + Z X X ∞ l l 1 t = (−1)l−mB(k−1) slds xn+1 m m l! * l m=0 ! 0 + X=0 X   Z n l (k−1) n l Bm n = (−1)l−m (n + 1)!δ = (−1)n−mB(k−1). m (l + 1)! n+1,l+1 m m l m=0 m=0 X=0 X   X  

9 By (40) and (41), we get

n n n n +1 (−1)n−m B(k−1) = (−1)n−mB(k). (42) m m m m m=0 m=0 X   X   By (2) and (3), we see that

1 − e−t et − 1 r B(k)(x) ∼ , t , B(r)(x) ∼ , t , r ≥ 0. (43) n Li (1 − e−t) n t  k     From (20), (21) and (43), we have

n (k) B(r) Bn (x)= Cn,m m (x), (44) m=0 X where r et−1 1 t m n C = −t t x (45) n,m 1−e  m! * −t + Lik(1−e ) −t t r 1 Lik (1 − e ) e − 1 tmxn = −t m! * 1 − e t +   −t t r n Lik (1 − e ) e − 1 xn−m . = −t m * 1 − e t +    

By (17), we easily get ∞ et − 1 r r! = S (l + r, r)tl. (46) t (l + r)! 2 l   X=0 Thus, from (46), we have

n−m et − 1 r r! xn−m = S (l + r, r)(n − m) xn−m−l. (47) t (l + r)! 2 l l   X=0

10 By (45) and (47), we get

n−m n r! Li (1 − e−t) C = S (l + r, r)(n − m) k xn−m−l (48) n,m m (l + r)! 2 l 1 − e−t l * +   X=0 n−m − t n r! Lik (1 − e ) S l r, r n m t0 xn−m−l = 2( + )( − )l −t m (l + r)! * 1 − e +   l=0 nX−m n r! k = S (l + r, r)(n − m) B( ) . m (l + r)! 2 l n−m−l l   X=0 Therefore, by (44) and (48), we obtain the following theorem.

Theorem 4. For k ∈ Z and r ∈ Z≥0, we have n n−m n r!(n − m) B(k)(x)= l S (l + r, r)B(k) B(r)(x). n m (l + r)! 2 n−l−m n m=0 ( l ) X   X=0 For r ∈ Z≥0, the Euler polynomials of order r are defined by the generating function to be ∞ 2 r tn ext = E(r)(x) , (see [2, 6, 8]). (49) et +1 n n! n=0   X By (2) and (49), we see that 1 − e−t et +1 r B(k)(x) ∼ , t , E(r)(x) ∼ , t . (50) n Li (1 − e−t) n 2  k     From (20), (21) and (50), we have n (k) (r) Bn (x)= Cn,mEm (x), (51) m=0 X where 1 Li (1 − e−t) et +1 r C k tmxn n,m = −t (52) m! * 1 − e 2 +   n −t Lik (1 − e ) r m et xn−m = r −t +1 2 * 1 − e +  n r −t  r Lik (1 − e ) m ejtxn−m = r −t 2 j * 1 − e +  j=0   X

11 r n r Li (1 − e−t) = m t0 k (x + j)n−m 2r j 1 − e−t  j=0 * + X   n r r (k) = m B (j). 2r j n−m  j=0 X   Therefore, by (51) and (52), we obtain the following theorem.

Theorem 5. For k ∈ Z and r ∈ Z≥0, we have n r 1 n r B(k)(x)= B(k) (j) E(r)(x). n 2r m j n−m n m=0 ( j=0 ) X   X   Let λ ∈ C with λ =6 1. For r ∈ Z≥0, the Frobenius-Euler polynomials are also defined by the generating function to be ∞ 1 − λ r tn ext = H(r)(x|λ) , (see [2, 6, 7]). (53) et − λ n n! n=0   X From (2), (15) and (53), we note that 1 − e−t et − λ r B(k)(x) ∼ , t , H(r)(x|λ) ∼ , t . (54) n Li (1 − e−t) n 1 − λ  k     By (20), (21) and (54), we get n (k) (r) Bn (x)= Cn,mHm (x|λ), (55) m=0 X where 1 Li (1 − e−t) et − λ r C k tmxn n,m = −t (56) m! * 1 − e 1 − λ +   n −t Lik (1 − e ) r m et λ xn−m = r −t − (1 − λ) * 1 − e +  n r  −t r Lik (1 − e ) = m (−λ)r− j ejtxn−m (1 − λ)r j 1 − e−t  j=0 * + X   r n r Li (1 − e− t) = m (−λ)r−j t0 k (x + j)n−m (1 − λ)r j 1 − e−t  j=0 * + X   n r r k = m (−λ)r−jB( ) (j). (1 − λ)r j n−m  j=0 X  

12 Therefore, by (55) and (56), we obtain the following theorem.

Theorem 6. For k ∈ Z and r ∈ Z≥0, we have

n r 1 n r B(k)(x)= (−λ)r−jB(k) (j) H(r)(x|λ). n (1 − λ)r m j n−m m m=0 ( j=0 ) X   X   References

[1] S. Araci, M. Acikgoz, A. Kilicman, Extended p-adic q-invariant integrals on Zp associated with applications of umbral calculus, Adv. Difference Equ. 2013, 2013:96.

[2] S. Araci, M. Acikgoz, A note on the Frobenius-Euler numbers and polyno- mials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22(2012), no. 3, 399-406.

[3] A. Bayad, Y. Hamahata, Polylogarithms and poly-, Kyushu J. Math. 65 (2011), no. 1, 15–24.

[4] R. Dere, Y. Simsek, Applications of umbral algebra to some special poly- nomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 433–438.

[5] M. Kaneko, Poly-Bernoulli numbers, J. Th´eor. Nombres Bordeaux 9 (1997), no. 1, 221–228.

[6] D. S. Kim, T. Kim, Some identities of Frobenius–Euler polynomials arising from umbral calculus, Adv. Difference Equ., 2012, 2012:196, 10pp.

[7] D. S. Kim, T. Kim, Y. H. Kim, S. H. Lee, Some arithmetic properties of Bernoulli and Euler numbers, Adv. Stud. Contemp. Math. 22 (2012), no. 4, 467–480.

[8] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Zp, Russ. J. Math. Phys. 16 (2009), no. 1. 93–96.

[9] S. Roman, The umbral Calculus, Pure and Applied , 111,Aca- demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. x+193 pp. ISBN: 0-12-594380-6.

13 [10] S. Roman, G.–C. Rota, The umbral Calculus, Advances in Math. 27 (1978), no. 2, 95–188.

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea e-mail: [email protected]

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea e-mail: [email protected] Division of General Education, Kwangwoon University, Seoul 139-701, Repub- lic of Korea e-mail: [email protected]

14