New Orthogonality Relations for the Hermite Polynomials and Related Hilbert Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 146, 89-98 (1990) New Orthogonality Relations for the Hermite Polynomials and Related Hilbert Spaces S. J. L. VAN EIJNDHOVEN AND J. L. H. MEYERS Eindhooen Uniuersify of Technology, Department of Mathematics. P.O. Bo.u 513, 5600MB Eindhoren, The Netherland.? Submitted hy George Gasper Received October 22, 1987 The Hermite polynomials give rise to orthonormal bases in Bagmann-like Hilbert spaces X,, 0 < A < 1, consisting of entire functions. These Hilbert spaces are related to the Gelfand-Shilov space S ;:I. viz. S ::f = (Jo< ,4<, X,4. (7, 1990 Academic Press. Inc. INTRODUCTION For n = 0, 1, 2, .. the n th Hermite polynomial H, is defined by n H,(x)=(-1)“e”’ $ eP2. (0.1) ( > The polynomials H, satisfy the following orthogonality relations ,x H,(x) H,(x) e& d.x = 71”~2”n! 6,,,. (0.2.) s- 7. Here a,,,, denotes Kronecker’s delta symbol. The orthogonality relations (0.2) can be readily obtained with the aid of the generating function, viz. .,zo 5 H,(x) = exp(2xz - z2). (0.3 1 Indeed, let anm = sFr H,(x) H,(x) e@ dx. Then we have exp[ -9 + 2x(z1 + z2) - z: - z:] dx =7t Ii2 exp[2z,z,]. So it follows that anm= n112(n!m!/n!) 2” 6,,. 89 0022-247X/90 $3.00 Copynght #r: 1990 by Academic Press. Inc. All rights of reproduction in any form reserved. 90 VAN EIJNDHOVEN AND MEYERS If we set l+hJx) = (7r’,22”,1!) ’ 2 e “-‘H,,(g), .YE R, (0.4) then the functions $,, n=O, 1, 2.
[Show full text]